Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Mathematical foundations
This unique textbook, in contrast to a standard logic text, provides the reader with a logic that actually can be used in practice to express and reason about mathematical ideas.The book is an introduction to simple type theory, a classical higher-order version of predicate logic that extends first-order logic. It presents a practice-oriented logic called Alonzo that is based on Alonzo Church's formulation of simple type theory known as Church's type theory. Unlike traditional predicate logics, Alonzo admits undefined expressions. The book illustrates, using Alonzo, how simple type theory is suited ideally for reasoning about mathematical structures and constructing libraries of mathematical knowledge. Topics and features: Offers the first book-length introduction to simple type theory as a predicate logic Provides the reader with a logic that is close to mathematical practice Presents the tools needed to build libraries of mathematical knowledge Employs two semantics, one for mathematics and one for logic Emphasizes the model-theoretic view of predicate logic Includes several important topics, such as definite description and theory morphisms, not usually found in standard logic textbooks Aimed at students of computing and mathematics at the graduate or upper-undergraduate level, this book is also well-suited for mathematicians, computing professionals, engineers, and scientists who need a practical logic for expressing and reasoning about mathematical ideas. William M. Farmer is a Professor in the Department of Computing and Software at McMaster University in Hamilton, Ontario, Canada.
The present book aims to provide systematic and reliable techniques, called the global solution, for Sudoku puzzles. Any proper Sudoku puzzle, which has one and only one solution of Sudoku, can be solved by anyone following the techniques provided in this book. Specific symbols are introduced to express the 6 basic rules of the Sudoku global solution, as the results, those Sudoku solving techniques are presented similar to the annotations in chess. Finnish mathematician Arto Inkala proposed 'the most difficult Sudoku puzzle' in 2007. Then, he designed another difficult Sudoku puzzle in 2012, named 'the thing Everest'. In the present book the solving process of those two difficult Sudoku puzzles are illustrated reliably by the specific symbols of the global solution step by step.
College students struggle with the switch from thinking of mathematics as a calculation based subject to a problem solving based subject. This book describes how the introduction to proofs course can be taught in a way that gently introduces students to this new way of thinking. This introduction utilizes recent research in neuroscience regarding how the brain learns best. Rather than jumping right into proofs, students are first taught how to change their mindset about learning, how to persevere through difficult problems, how to work successfully in a group, and how to reflect on their learning. With these tools in place, students then learn logic and problem solving as a further foundation.Next various proof techniques such as direct proofs, proof by contraposition, proof by contradiction, and mathematical induction are introduced. These proof techniques are introduced using the context of number theory. The last chapter uses Calculus as a way for students to apply the proof techniques they have learned.
College students struggle with the switch from thinking of mathematics as a calculation based subject to a problem solving based subject. This book describes how the introduction to proofs course can be taught in a way that gently introduces students to this new way of thinking. This introduction utilizes recent research in neuroscience regarding how the brain learns best. Rather than jumping right into proofs, students are first taught how to change their mindset about learning, how to persevere through difficult problems, how to work successfully in a group, and how to reflect on their learning. With these tools in place, students then learn logic and problem solving as a further foundation.Next various proof techniques such as direct proofs, proof by contraposition, proof by contradiction, and mathematical induction are introduced. These proof techniques are introduced using the context of number theory. The last chapter uses Calculus as a way for students to apply the proof techniques they have learned.
This collection brings together exciting new works that address today's key challenges for a feminist power-sensitive approach to knowledge and scientific practice. Taking up such issues as the role of contextualism in epistemology, democracy and dissent in knowledge practices, and epistemic agency under conditions of oppression, the essays build upon well-established work in feminist epistemology and philosophy of science such as standpoint theory and contextual empiricism, offering new interpretations and applications. Many contributions capture the current engagement of feminist epistemologists with the insights and programs of nonfeminist epistemologists, while others focus on the intersections between feminist epistemology and other fields of feminist inquiry such as feminist ethics and metaphysics. *see remarks below for remainder of text*
Proofs 101: An Introduction to Formal Mathematics serves as an introduction to proofs for mathematics majors who have completed the calculus sequence (at least Calculus I and II) and a first course in linear algebra. The book prepares students for the proofs they will need to analyze and write the axiomatic nature of mathematics and the rigors of upper-level mathematics courses. Basic number theory, relations, functions, cardinality, and set theory will provide the material for the proofs and lay the foundation for a deeper understanding of mathematics, which students will need to carry with them throughout their future studies. Features Designed to be teachable across a single semester Suitable as an undergraduate textbook for Introduction to Proofs or Transition to Advanced Mathematics courses Offers a balanced variety of easy, moderate, and difficult exercises
Structural proof theory is a branch of logic that studies the general structure and properties of logical and mathematical proofs. This book is both a concise introduction to the central results and methods of structural proof theory, and a work of research that will be of interest to specialists. The book is designed to be used by students of philosophy, mathematics, and computer science. A special feature of the volume is a computerized system for developing proofs interactively, downloadable from the web and regularly updated.
This collection of surveys and research papers on recent topics of interest in combinatorics is dedicated to Paul Erdös, who attended the conference and who is represented by two articles in the collection, including one, unfinished, which he was writing on the eve of his sudden death. Erdös was one of the greatest mathematicians of his century and often the subject of anecdotes about his somewhat unusual lifestyle. A new preface, written by friends and colleagues, gives a flavor of his life, including many such stories, and also describes the broad outline and importance of his work in combinatorics and other related fields.
Proofs 101: An Introduction to Formal Mathematics serves as an introduction to proofs for mathematics majors who have completed the calculus sequence (at least Calculus I and II) and a first course in linear algebra. The book prepares students for the proofs they will need to analyze and write the axiomatic nature of mathematics and the rigors of upper-level mathematics courses. Basic number theory, relations, functions, cardinality, and set theory will provide the material for the proofs and lay the foundation for a deeper understanding of mathematics, which students will need to carry with them throughout their future studies. Features Designed to be teachable across a single semester Suitable as an undergraduate textbook for Introduction to Proofs or Transition to Advanced Mathematics courses Offers a balanced variety of easy, moderate, and difficult exercises
There are thousands of books relating to poker, blackjack, roulette and baccarat, including strategy guides, statistical analysis, psychological studies, and much more. However, there are no books on Pell, Rouleno, Street Dice, and many other games that have had a short life in casinos! While this is understandable - most casino gamblers have not heard of these games, and no one is currently playing them - their absence from published works means that some interesting mathematics and gaming history are at risk of being lost forever. Table games other than baccarat, blackjack, craps, and roulette are called carnival games, as a nod to their origin in actual traveling or seasonal carnivals. Mathematics of Casino Carnival Games is a focused look at these games and the mathematics at their foundation. Features * Exercises, with solutions, are included for readers who wish to practice the ideas presented * Suitable for a general audience with an interest in the mathematics of gambling and games * Goes beyond providing practical 'tips' for gamblers, and explores the mathematical principles that underpin gambling games
This volume presents some exciting new developments occurring on the interface between set theory and computability as well as their applications in algebra, analysis and topology. These include effective versions of Borel equivalence, Borel reducibility and Borel determinacy. It also covers algorithmic randomness and dimension, Ramsey sets and Ramsey spaces. Many of these topics are being discussed in the NSF-supported annual Southeastern Logic Symposium.
Emphasizes the computer science aspects of the subject.
This monograph on the homotopy theory of topologized diagrams of spaces and spectra gives an expert account of a subject at the foundation of motivic homotopy theory and the theory of topological modular forms in stable homotopy theory. Beginning with an introduction to the homotopy theory of simplicial sets and topos theory, the book covers core topics such as the unstable homotopy theory of simplicial presheaves and sheaves, localized theories, cocycles, descent theory, non-abelian cohomology, stacks, and local stable homotopy theory. A detailed treatment of the formalism of the subject is interwoven with explanations of the motivation, development, and nuances of ideas and results. The coherence of the abstract theory is elucidated through the use of widely applicable tools, such as Barr's theorem on Boolean localization, model structures on the category of simplicial presheaves on a site, and cocycle categories. A wealth of concrete examples convey the vitality and importance of the subject in topology, number theory, algebraic geometry, and algebraic K-theory. Assuming basic knowledge of algebraic geometry and homotopy theory, Local Homotopy Theory will appeal to researchers and advanced graduate students seeking to understand and advance the applications of homotopy theory in multiple areas of mathematics and the mathematical sciences.
This is the first book to introduce Green-function-based multiscale theory and the corresponding finite element method, which are readily applicable to composites and random media. The methodology is considered to be the one that most effectively tackles the uncertainty of stress propagation in complex heterogeneities of random media, and which presents multiscale theory from distinctive scale separation and scale-coupling viewpoints. Deliberately taking a multiscale perspective, it covers scale separation and then scale coupling. Both micromechanics and novel scale-coupling mechanics are described in relation to variational principles and bounds, as well as in the emerging topics on percolation and scale-coupling computation. It gives detail on the different bounds encountered, covering classical second and third order, new fourth order, and innovative ellipsoidal variations. Green-function-based multiscale theory is addressed to applications in solid mechanics and transport of complex media ranging from micro- and nano-composites, polycrystals, soils, rocks, cementitious materials, to biological materials. It is useful as a graduate textbook in civil and mechanical engineering and as a reference.
The aim of this book is to present the fundamental theoretical results concerning inference rules in deductive formal systems. Primary attention is focused on: - admissible or permissible inference rules - the derivability of the admissible inference rules - the structural completeness of logics - the bases for admissible and valid inference rules. There is particular emphasis on propositional non-standard logics (primary, superintuitionistic and modal logics) but general logical consequence relations and classical first-order theories are also considered. The book is basically self-contained and special attention has been made to present the material in a convenient manner for the reader. Proofs of results, many of which are not readily available elsewhere, are also included. The book is written at a level appropriate for first-year graduate students in mathematics or computer science. Although some knowledge of elementary logic and universal algebra are necessary, the first chapter includes all the results from universal algebra and logic that the reader needs. For graduate students in mathematics and computer science the book is an excellent textbook.
Architecture of Mathematics describes the logical structure of Mathematics from its foundations to its real-world applications. It describes the many interweaving relationships between different areas of mathematics and its practical applications, and as such provides unique reading for professional mathematicians and nonmathematicians alike. This book can be a very important resource both for the teaching of mathematics and as a means to outline the research links between different subjects within and beyond the subject. Features All notions and properties are introduced logically and sequentially, to help the reader gradually build understanding. Focusses on illustrative examples that explain the meaning of mathematical objects and their properties. Suitable as a supplementary resource for teaching undergraduate mathematics, and as an aid to interdisciplinary research. Forming the reader's understanding of Mathematics as a unified science, the book helps to increase his general mathematical culture.
This new volume on logic follows a recognizable format that deals in turn with the topics of mathematical logic, moving from concepts, via definitions and inferences, to theories and axioms. However, this fresh work offers a key innovation in its 'pyramidal' graph system for the logical formalization of all these items. The author has developed this new methodology on the basis of original research, traditional logical instruments such as Porphyrian trees, and modern concepts of classification, in which pyramids are the central organizing concept. The pyramidal schema enables both the content of concepts and the relations between the concept positions in the pyramid to be read off from the graph. Logical connectors are analyzed in terms of the direction in which they connect within the pyramid. Additionally, the author shows that logical connectors are of fundamentally different types: only one sort generates propositions with truth values, while the other yields conceptual expressions or complex concepts. On this basis, strong arguments are developed against adopting the non-discriminating connector definitions implicit in Wittgensteinian truth-value tables. Special consideration is given to mathematical connectors so as to illuminate the formation of concepts in the natural sciences. To show what the pyramidal method can contribute to science, a pyramid of the number concepts prevalent in mathematics is constructed. The book also counters the logical dogma of 'false' contradictory propositions and sheds new light on the logical characteristics of probable propositions, as well as on syllogistic and other inferences.
This new book on mathematical logic by Jeremy Avigad gives a thorough introduction to the fundamental results and methods of the subject from the syntactic point of view, emphasizing logic as the study of formal languages and systems and their proper use. Topics include proof theory, model theory, the theory of computability, and axiomatic foundations, with special emphasis given to aspects of mathematical logic that are fundamental to computer science, including deductive systems, constructive logic, the simply typed lambda calculus, and type-theoretic foundations. Clear and engaging, with plentiful examples and exercises, it is an excellent introduction to the subject for graduate students and advanced undergraduates who are interested in logic in mathematics, computer science, and philosophy, and an invaluable reference for any practicing logician's bookshelf.
Statistical Methods in Computer Security summarizes discussions held at the recent Joint Statistical Meeting to provide a clear layout of current applications in the field. This blue-ribbon reference discusses the most influential advancements in computer security policy, firewalls, and security issues related to passwords. It addresses crime and misconduct on the Internet, considers the development of infrastructures that may prevent breaches of security and law, and illustrates the vulnerability of networked computers to new virus attacks despite widespread deployment of antivirus software, firewalls, and other network security equipment.
This new book deals with the construction of finite-difference (FD) algorithms for three main types of equations: elliptic equations, heat equations, and gas dynamic equations in Lagrangian form. These methods can be applied to domains of arbitrary shapes. The construction of FD algorithms for all types of equations is done on the basis of the support-operators method (SOM). This method constructs the FD analogs of main invariant differential operators of first order such as the divergence, the gradient, and the curl. This book is unique because it is the first book not in Russian to present the support-operators ideas. Conservative Finite-Difference Methods on General Grids is completely self-contained, presenting all the background material necessary for understanding. The book provides the tools needed by scientists and engineers to solve a wide range of practical engineering problems. An abundance of tables and graphs support and explain methods. The book details all algorithms needed for implementation. A 3.5" IBM compatible computer diskette with the main algorithms in FORTRAN accompanies text for easy use.
Introduction to Recognition and Deciphering of Patterns is meant to acquaint STEM and non-STEM students with different patterns, as well as to where and when specific patterns arise. In addition, the book teaches students how to recognize patterns and distinguish the similarities and differences between them. Patterns, such as weather patterns, traffic patterns, behavioral patterns, geometric patterns, linguistic patterns, structural patterns, digital patterns, and the like, emerge on an everyday basis, . Recognizing patterns and studying their unique traits are essential for the development and enhancement of our intuitive skills and for strengthening our analytical skills. Mathematicians often apply patterns to get acquainted with new concepts--a technique that can be applied across many disciplines. Throughout this book we explore assorted patterns that emerge from various geometrical configurations of squares, circles, right triangles, and equilateral triangles that either repeat at the same scale or at different scales. The book also analytically examines linear patterns, geometric patterns, alternating patterns, piecewise patterns, summation-type patterns and factorial-type patterns. Deciphering the details of these distinct patterns leads to the proof by induction method, and the book will also render properties of Pascal's triangle and provide supplemental practice in deciphering specific patterns and verifying them. This book concludes with first-order recursive relations: describing sequences as recursive relations, obtaining the general solution by solving an initial value problem, and determining the periodic traits. Features * Readily accessible to a broad audience, including those with limited mathematical background * Especially useful for students in non-STEM disciplines, such as psychology, sociology, economics and business, as well as for liberal arts disciplines and art students.
In Mathematical Foundations of Public Key Cryptography, the authors integrate the results of more than 20 years of research and teaching experience to help students bridge the gap between math theory and crypto practice. The book provides a theoretical structure of fundamental number theory and algebra knowledge supporting public-key cryptography. Rather than simply combining number theory and modern algebra, this textbook features the interdisciplinary characteristics of cryptography-revealing the integrations of mathematical theories and public-key cryptographic applications. Incorporating the complexity theory of algorithms throughout, it introduces the basic number theoretic and algebraic algorithms and their complexities to provide a preliminary understanding of the applications of mathematical theories in cryptographic algorithms. Supplying a seamless integration of cryptography and mathematics, the book includes coverage of elementary number theory; algebraic structure and attributes of group, ring, and field; cryptography-related computing complexity and basic algorithms, as well as lattice and fundamental methods of lattice cryptanalysis. The text consists of 11 chapters. Basic theory and tools of elementary number theory, such as congruences, primitive roots, residue classes, and continued fractions, are covered in Chapters 1-6. The basic concepts of abstract algebra are introduced in Chapters 7-9, where three basic algebraic structures of groups, rings, and fields and their properties are explained. Chapter 10 is about computational complexities of several related mathematical algorithms, and hard problems such as integer factorization and discrete logarithm. Chapter 11 presents the basics of lattice theory and the lattice basis reduction algorithm-the LLL algorithm and its application in the cryptanalysis of the RSA algorithm. Containing a number of exercises on key algorithms, the book is suitable for use as a textbook for undergraduate students and first-year graduate students in information security programs. It is also an ideal reference book for cryptography professionals looking to master public-key cryptography.
Introduction to Recognition and Deciphering of Patterns is meant to acquaint STEM and non-STEM students with different patterns, as well as to where and when specific patterns arise. In addition, the book teaches students how to recognize patterns and distinguish the similarities and differences between them. Patterns, such as weather patterns, traffic patterns, behavioral patterns, geometric patterns, linguistic patterns, structural patterns, digital patterns, and the like, emerge on an everyday basis, . Recognizing patterns and studying their unique traits are essential for the development and enhancement of our intuitive skills and for strengthening our analytical skills. Mathematicians often apply patterns to get acquainted with new concepts--a technique that can be applied across many disciplines. Throughout this book we explore assorted patterns that emerge from various geometrical configurations of squares, circles, right triangles, and equilateral triangles that either repeat at the same scale or at different scales. The book also analytically examines linear patterns, geometric patterns, alternating patterns, piecewise patterns, summation-type patterns and factorial-type patterns. Deciphering the details of these distinct patterns leads to the proof by induction method, and the book will also render properties of Pascal's triangle and provide supplemental practice in deciphering specific patterns and verifying them. This book concludes with first-order recursive relations: describing sequences as recursive relations, obtaining the general solution by solving an initial value problem, and determining the periodic traits. Features * Readily accessible to a broad audience, including those with limited mathematical background * Especially useful for students in non-STEM disciplines, such as psychology, sociology, economics and business, as well as for liberal arts disciplines and art students.
Michael Powell is one of the world's foremost figures in numerical analysis. This volume is derived from invited talks given at a meeting celebrating his 60th birthday and, reflecting Powell's own achievements, focuses on innovative work in optimization and in approximation theory. The individual papers have been written by leading authorities in their subjects and are a mix of expository articles and surveys on new work. They have all been reviewed and edited to form a volume that represents the state of the art in an important discipline within mathematics, with highly relevant applications throughout science and engineering.
This book gives an introduction to theories of computability from a mathematically sophisticated point of view. It treats not only 'the' theory of computability (created by Alan Turing and others in the 1930s), but also a variety of other theories (of Boolean functions, automata and formal languages). These are addressed from the classical perspective of their generation by grammars and from the modern perspective as rational cones. The treatment of the classical theory of computable functions and relations takes the form of a tour through basic recursive function theory, starting with an axiomatic foundation and developing the essential methods in order to survey the most memorable results of the field. This authoritative account by one of the leading lights of the subject will prove exceptionally useful reading for graduate students, and researchers in theoretical computer science and mathematics. |
You may like...
The Art of Logic - How to Make Sense in…
Eugenia Cheng
Paperback
(1)
Primary Maths for Scotland Textbook 2A…
Craig Lowther, Antoinette Irwin, …
Paperback
Theory and Applications of…
Florentin Smarandache, Madeline Al-Tahan
Hardcover
R7,022
Discovery Miles 70 220
From Quantum Information to Musical…
Maria Luisa Dalla Chiara, Roberto Giuntini, …
Paperback
R484
Discovery Miles 4 840
|