![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations
The Italian mathematician Mario Pieri (1860-1913) played an integral part in the research groups of Corrado Segre and Giuseppe Peano, and thus had a significant, yet somewhat underappreciated impact on several branches of mathematics, particularly on the development of algebraic geometry and the foundations of mathematics in the years around the turn of the 20th century. This book is the first in a series of three volumes that are dedicated to countering that neglect and comprehensively examining Pieria (TM)s life, mathematical work and influence in such diverse fields as mathematical logic, algebraic geometry, number theory, inversive geometry, vector analysis, and differential geometry. The Legacy of Mario Pieri in Geometry and Arithmetic introduces readers to Pieria (TM)s career and his studies in foundations, from both historical and modern viewpoints, placing his life and research in context and tracing his influence on his contemporaries as well as more recent mathematicians. The text also provides a glimpse of the Italian academic world of Pieri's time, and its relationship with the developing international mathematics community. Included in this volume are the first English translations, along with analyses, of two of his most important axiomatizationsa "his postulates for arithmetic, which Peano judged superior to his own; and his foundation of elementary geometry on the basis of point and sphere, which Alfred Tarski used as a basis for his own system. Combining an engaging exposition, little-known historical information, exhaustive references and an excellent index, this text will be of interest to graduate students, researchers and historians with a general knowledgeof logic and advanced mathematics, and it requires no specialized experience in mathematical logic or the foundations of geometry.
This undergraduate textbook promotes an active transition to higher mathematics. Problem solving is the heart and soul of this book: each problem is carefully chosen to demonstrate, elucidate, or extend a concept. More than 300 exercises engage the reader in extensive arguments and creative approaches, while exploring connections between fundamental mathematical topics. Divided into four parts, this book begins with a playful exploration of the building blocks of mathematics, such as definitions, axioms, and proofs. A study of the fundamental concepts of logic, sets, and functions follows, before focus turns to methods of proof. Having covered the core of a transition course, the author goes on to present a selection of advanced topics that offer opportunities for extension or further study. Throughout, appendices touch on historical perspectives, current trends, and open questions, showing mathematics as a vibrant and dynamic human enterprise. This second edition has been reorganized to better reflect the layout and curriculum of standard transition courses. It also features recent developments and improved appendices. An Invitation to Abstract Mathematics is ideal for those seeking a challenging and engaging transition to advanced mathematics, and will appeal to both undergraduates majoring in mathematics, as well as non-math majors interested in exploring higher-level concepts. From reviews of the first edition: Bajnok's new book truly invites students to enjoy the beauty, power, and challenge of abstract mathematics. ... The book can be used as a text for traditional transition or structure courses ... but since Bajnok invites all students, not just mathematics majors, to enjoy the subject, he assumes very little background knowledge. Jill Dietz, MAA ReviewsThe style of writing is careful, but joyously enthusiastic.... The author's clear attitude is that mathematics consists of problem solving, and that writing a proof falls into this category. Students of mathematics are, therefore, engaged in problem solving, and should be given problems to solve, rather than problems to imitate. The author attributes this approach to his Hungarian background ... and encourages students to embrace the challenge in the same way an athlete engages in vigorous practice. John Perry, zbMATH
This book presents an English translation of a classic Russian text on duality theory for Heyting algebras. Written by Georgian mathematician Leo Esakia, the text proved popular among Russian-speaking logicians. This translation helps make the ideas accessible to a wider audience and pays tribute to an influential mind in mathematical logic. The book discusses the theory of Heyting algebras and closure algebras, as well as the corresponding intuitionistic and modal logics. The author introduces the key notion of a hybrid that "crossbreeds" topology (Stone spaces) and order (Kripke frames), resulting in the structures now known as Esakia spaces. The main theorems include a duality between the categories of closure algebras and of hybrids, and a duality between the categories of Heyting algebras and of so-called strict hybrids. Esakia's book was originally published in 1985. It was the first of a planned two-volume monograph on Heyting algebras. But after the collapse of the Soviet Union, the publishing house closed and the project died with it. Fortunately, this important work now lives on in this accessible translation. The Appendix of the book discusses the planned contents of the lost second volume.
Analysis and Synthesis of Singular Systems provides a base for further theoretical research and a design guide for engineering applications of singular systems. The book presents recent advances in analysis and synthesis problems, including state-feedback control, static output feedback control, filtering, dissipative control, H8 control, reliable control, sliding mode control and fuzzy control for linear singular systems and nonlinear singular systems. Less conservative and fresh novel techniques, combined with the linear matrix inequality (LMI) technique, the slack matrix method, and the reciprocally convex combination approach are applied to singular systems. This book will be of interest to academic researchers, postgraduate and undergraduate students working in control theory and singular systems.
During the last few decades the ideas, methods, and results of the theory of Boolean algebras have played an increasing role in various branches of mathematics and cybernetics. This monograph is devoted to the fundamentals of the theory of Boolean constructions in universal algebra. Also considered are the problems of presenting different varieties of universal algebra with these constructions, and applications for investigating the spectra and skeletons of varieties of universal algebras. For researchers whose work involves universal algebra and logic.
This book presents the first algebraic treatment of quasi-truth fuzzy logic and covers the algebraic foundations of many-valued logic. It offers a comprehensive account of basic techniques and reports on important results showing the pivotal role played by perfect many-valued algebras (MV-algebras). It is well known that the first-order predicate Lukasiewicz logic is not complete with respect to the canonical set of truth values. However, it is complete with respect to all linearly ordered MV -algebras. As there are no simple linearly ordered MV-algebras in this case, infinitesimal elements of an MV-algebra are allowed to be truth values. The book presents perfect algebras as an interesting subclass of local MV-algebras and provides readers with the necessary knowledge and tools for formalizing the fuzzy concept of quasi true and quasi false. All basic concepts are introduced in detail to promote a better understanding of the more complex ones. It is an advanced and inspiring reference-guide for graduate students and researchers in the field of non-classical many-valued logics.
Problems in Set Theory, Mathematical Logic and the Theory of Algorithms by I. Lavrov & L. Maksimova is an English translation of the fourth edition of the most popular student problem book in mathematical logic in Russian. It covers major classical topics in proof theory and the semantics of propositional and predicate logic as well as set theory and computation theory. Each chapter begins with 1-2 pages of terminology and definitions that make the book self-contained. Solutions are provided. The book is likely to become an essential part of curricula in logic.
How does Russell's realist conception of the proposition and its
constituents inform the techniques for analysis which he adopted in
mathematics? Jolen Galaugher's book sheds light on this perplexing
issue. In this book, Galaugher provides a detailed treatment of
Russell's early conception of analysis in the light of the
philosophical doctrines to which it answered, and the demands
imposed by existing mathematics on his early logicist program. She
ties together the philosophical commitments which occasioned
Russell's break with idealism and the problems which guided his
selection of technical apparatus in his embrace of logicism. The
result is a detailed synthesis of the primary materials from the
emergence of Russell's realism in 1898 to his landmark theory of
descriptions in 1905. Galaugher's broad thesis is that although
Russell adopted increasingly refined techniques by which to carry
out his logical analyses and avoid the Contradiction, the most
crucial aspects of his philosophical conception of logical analysis
were retained.
The aim of this volume is to reinforce the interaction between the three main branches (abstract, convex and computational) of the theory of polytopes. The articles include contributions from many of the leading experts in the field, and their topics of concern are expositions of recent results and in-depth analyses of the development (past and future) of the subject. The subject matter of the book ranges from algorithms for assignment and transportation problems to the introduction of a geometric theory of polyhedra which need not be convex. With polytopes as the main topic of interest, there are articles on realizations, classifications, Eulerian posets, polyhedral subdivisions, generalized stress, the Brunn--Minkowski theory, asymptotic approximations and the computation of volumes and mixed volumes. For researchers in applied and computational convexity, convex geometry and discrete geometry at the graduate and postgraduate levels.
This volume is based on the papers that were presented at the International Conference Model-Based Reasoning: Scientific Discovery, Technological Innovation, Values' (MBR'01), held at the Collegio Ghislieri, University of Pavia, Pavia, Italy, in May 2001. The previous volume Model-Based Reasoning in Scientific Discovery, edited by L. Magnani, N.J. Nersessian, and P. Thagard (Kluwer Academic/Plenum Publishers, New York, 1999; Chinese edition, China Science and Technology Press, Beijing, 2000), was based on the papers presented at the first model-based reasoning' international conference, held at the same venue in December 1998. The presentations given at the Conference explore how scientific thinking uses models and exploratory reasoning to produce creative changes in theories and concepts. Some address the problem of model-based reasoning in ethics, especially pertaining to science and technology, and stress some aspects of model-based reasoning in technological innovation. The study of diagnostic, visual, spatial, analogical, and temporal reasoning has demonstrated that there are many ways of performing intelligent and creative reasoning that cannot be described with the help only of traditional notions of reasoning such as classical logic. Understanding the contribution of modeling practices to discovery and conceptual change in science requires expanding scientific reasoning to include complex forms of creative reasoning that are not always successful and can lead to incorrect solutions. The study of these heuristic ways of reasoning is situated at the crossroads of philosophy, artificial intelligence, cognitive psychology, and logic; that is, at the heart of cognitivescience. There are several key ingredients common to the various forms of model-based reasoning. The term model' comprises both internal and external representations. The models are intended as interpretations of target physical systems, processes, phenomena, or situations. The models are retrieved or constructed on the basis of potentially satisfying salient constraints of the target domain. Moreover, in the modeling process, various forms of abstraction are used. Evaluation and adaptation take place in light of structural, causal, and/or functional constraints. Model simulation can be used to produce new states and enable evaluation of behaviors and other factors. The various contributions of the book are written by interdisciplinary researchers who are active in the area of creative reasoning in science and technology, and are logically and computationally oriented: the most recent results and achievements about the topics above are illustrated in detail in the papers.
This monograph, for the first time in book form, considers the large structure of metric spaces as captured by bornologies: families of subsets that contain the singletons, that are stable under finite unions, and that are stable under taking subsets of its members. The largest bornology is the power set of the space and the smallest is the bornology of its finite subsets. Between these lie (among others) the metrically bounded subsets, the relatively compact subsets, the totally bounded subsets, and the Bourbaki bounded subsets. Classes of functions are intimately connected to various bornologies; e.g., (1) a function is locally Lipschitz if and only if its restriction to each relatively compact subset is Lipschitz; (2) a subset is Bourbaki bounded if and only if each uniformly continuous function on the space is bounded when restricted to the subset. A great deal of attention is given to the variational notions of strong uniform continuity and strong uniform convergence with respect to the members of a bornology, leading to the bornology of UC-subsets and UC-spaces. Spaces on which its uniformly continuous real-valued functions are stable under pointwise product are characterized in terms of the coincidence of the Bourbaki bounded subsets with a usually larger bornology. Special attention is given to Lipschitz and locally Lipschitz functions. For example, uniformly dense subclasses of locally Lipschitz functions within the real-valued continuous functions, Cauchy continuous functions, and uniformly continuous functions are presented. It is shown very generally that a function between metric spaces has a particular metric property if and only if whenever it is followed in a composition by a real-valued Lipschitz function, the composition has the property. Bornological convergence of nets of closed subsets, having Attouch-Wets convergence as a prototype, is considered in detail. Topologies of uniform convergence for continuous linear operators between normed spaces is explained in terms of the bornological convergence of their graphs. Finally, the idea of a bornological extension of a topological space is presented, and all regular extensions can be so realized.
Model theory is the meta-mathematical study of the concept of mathematical truth. After Afred Tarski coined the term Theory of Models in the early 1950's, it rapidly became one of the central most active branches of mathematical logic. In the last few decades, ideas that originated within model theory have provided powerful tools to solve problems in a variety of areas of classical mathematics, including algebra, combinatorics, geometry, number theory, and Banach space theory and operator theory. The two volumes of Beyond First Order Model Theory present the reader with a fairly comprehensive vista, rich in width and depth, of some of the most active areas of contemporary research in model theory beyond the realm of the classical first-order viewpoint. Each chapter is intended to serve both as an introduction to a current direction in model theory and as a presentation of results that are not available elsewhere. All the articles are written so that they can be studied independently of one another. This second volume contains introductions to real-valued logic and applications, abstract elementary classes and applications, interconnections between model theory and function spaces, nonstucture theory, and model theory of second-order logic. Features A coherent introduction to current trends in model theory. Contains articles by some of the most influential logicians of the last hundred years. No other publication brings these distinguished authors together. Suitable as a reference for advanced undergraduate, postgraduates, and researchers. Material presented in the book (e.g, abstract elementary classes, first-order logics with dependent sorts, and applications of infinitary logics in set theory) is not easily accessible in the current literature. The various chapters in the book can be studied independently.
Calculus for Engineering Students: Fundamentals, Real Problems, and Computers insists that mathematics cannot be separated from chemistry, mechanics, electricity, electronics, automation, and other disciplines. It emphasizes interdisciplinary problems as a way to show the importance of calculus in engineering tasks and problems. While concentrating on actual problems instead of theory, the book uses Computer Algebra Systems (CAS) to help students incorporate lessons into their own studies. Assuming a working familiarity with calculus concepts, the book provides a hands-on opportunity for students to increase their calculus and mathematics skills while also learning about engineering applications.
This monograph is a defence of the Fregean take on logic. The author argues that Freges projects, in logic and philosophy of language, are essentially connected and that the formalist shift produced by the work of Peano, Boole and Schroeder and continued by Hilbert and Tarski is completely alien to Frege's approach in the Begriffsschrift. A central thesis of the book is that judgeable contents, i.e. propositions, are the primary bearers of logical properties, which makes logic embedded in our conceptual system. This approach allows coherent and correct definitions of logical constants, logical consequence, and truth and connects their use to the practices of rational agents in science and everyday life.
Suitable for anyone who enjoys logic puzzles Could be used as a companion book for a course on mathematical proof. The puzzles feature the same issues of problem-solving and proof-writing. For anyone who enjoys logical puzzles. For anyone interested in legal reasoning. For anyone who loves the game of baseball.
Although cryptography plays an essential part in most modern solutions, especially in payments, cryptographic algorithms remain a black box for most users of these tools. Just as a sane backend developer does not drill down into low-level disk access details of a server filesystem, payments professionals have enough things to worry about before they ever need to bother themselves with debugging an encrypted value or a message digest. However, at a certain point, an engineer faces the need to identify a problem with a particular algorithm or, perhaps, to create a testing tool that would simulate a counterpart in a protocol that involves encryption. The world of cryptography has moved on with giant leaps. Available technical standards mention acronyms and link to more standards, some of which are very large while others are not available for free. After finding the standards for the algorithm, the specific mode of operation must also be identified. Most implementations use several cryptographic primitives—for example, key derivation with a block cipher, which produces a secret that is used together with a hash function and a double padding scheme to produce a digital signature of a base64-encoded value. Understanding this requires more sifting through online sources, more reading of platform and library documents, and finally, when some code can be written, there are very few test cases to validate it. Cryptography for Payment Professionals is intended for technical people, preferably with some background in software engineering, who may need to deal with a cryptographic algorithm in the payments realm. It does not cover the payment technology in-depth, nor does it provide more than a brief overview of some regulations and security standards. Instead, it focuses on the cryptographic aspects of each field it mentions. Highlights include: Major cryptographic algorithms and the principles of their operation Cryptographic aspects of card-present (e.g., magnetic stripe, EMV) and online (e.g., e-Commerce and 3DS 2.0) transactions A detailed description of TDES DUKPT and AES DUKPT protocols, as well as an example implementation and test cases for both It is best if the reader understands programming, number and string representations in machine memory, and bit operations. Knowledge of C, Python, or Java may make the examples easier to read but this is not mandatory. Code related to the book is available at the author’s GitHub site: https://github.com/ilya-dubinsky/cfpp
Fuzzy logics are many-valued logics that are well suited to reasoning in the context of vagueness. They provide the basis for the wider field of Fuzzy Logic, encompassing diverse areas such as fuzzy control, fuzzy databases, and fuzzy mathematics. This book provides an accessible and up-to-date introduction to this fast-growing and increasingly popular area. It focuses in particular on the development and applications of "proof-theoretic" presentations of fuzzy logics; the result of more than ten years of intensive work by researchers in the area, including the authors. In addition to providing alternative elegant presentations of fuzzy logics, proof-theoretic methods are useful for addressing theoretical problems (including key standard completeness results) and developing efficient deduction and decision algorithms. Proof-theoretic presentations also place fuzzy logics in the broader landscape of non-classical logics, revealing deep relations with other logics studied in Computer Science, Mathematics, and Philosophy. The book builds methodically from the semantic origins of fuzzy logics to proof-theoretic presentations such as Hilbert and Gentzen systems, introducing both theoretical and practical applications of these presentations.
Provides an in-depth treatment of the Traveling Salesman problem--the archetypical problem in combinatorial optimization. Each chapter deals with a different aspect of the problem, and has been written by an acknowledged expert in the field. Focusses on the essential ideas in a self-contained manner. Includes exercises and an extensive bibliography.
For a brief time in history, it was possible to imagine that a sufficiently advanced intellect could, given sufficient time and resources, in principle understand how to mathematically prove everything that was true. They could discern what math corresponds to physical laws, and use those laws to predict anything that happens before it happens. That time has passed. Goedel's undecidability results (the incompleteness theorems), Turing's proof of non-computable values, the formulation of quantum theory, chaos, and other developments over the past century have shown that there are rigorous arguments limiting what we can prove, compute, and predict. While some connections between these results have come to light, many remain obscure, and the implications are unclear. Are there, for example, real consequences for physics - including quantum mechanics - of undecidability and non-computability? Are there implications for our understanding of the relations between agency, intelligence, mind, and the physical world? This book, based on the winning essays from the annual FQXi competition, contains ten explorations of Undecidability, Uncomputability, and Unpredictability. The contributions abound with connections, implications, and speculations while undertaking rigorous but bold and open-minded investigation of the meaning of these constraints for the physical world, and for us as humans.
Stig Kanger (1924-1988) made important contributions to logic and formal philosophy. Kanger's most original achievements were in the areas of general proof theory, the semantics of modal and deontic logic, and the logical analysis of the concept of rights. But he contributed significantly to action theory, preference logic and the theory of measurement as well. This is the second of two volumes dedicated to the work of Stig Kanger. The first volume is a complete collection of Kanger's philosophical papers. The present volume contains critical essays on the various aspects of Kanger's work as well as some biographical sketches. Lennart A...qvist, Jan Berg, Brian Chellas, Anatoli Degtyarev, Lars Gustafsson, SAren HalldA(c)n, Kaj BA, rge Hansen, Sven Ove Hansson, Risto Hilpinen, Jaakko Hintikka, Ghita HolmstrAm-Hintikka, Lars Lindahl, Sten LindstrAm, Ingmar PArn, Dag Prawitz, Wlodek Rabinowicz, Krister Segerberg, Amartya Sen, SAren Stenlund, GAran Sundholm, and Andrei Voronkov have contributed to this volume.
The aim of this book volume is to explain the importance of Markov state models to molecular simulation, how they work, and how they can be applied to a range of problems. The Markov state model (MSM) approach aims to address two key challenges of molecular simulation: 1) How to reach long timescales using short simulations of detailed molecular models. 2) How to systematically gain insight from the resulting sea of data. MSMs do this by providing a compact representation of the vast conformational space available to biomolecules by decomposing it into states sets of rapidly interconverting conformations and the rates of transitioning between states.This kinetic definition allows one to easily vary the temporal and spatial resolution of an MSM from high-resolution models capable of quantitative agreement with (or prediction of) experiment to low-resolution models that facilitate understanding. Additionally, MSMs facilitate the calculation of quantities that are difficult to obtain from more direct MD analyses, such as the ensemble of transition pathways. This book introduces the mathematical foundations of Markov models, how they can be used to analyze simulations and drive efficient simulations, and some of the insights these models have yielded in a variety of applications of molecular simulation."
* Written by an interdisciplinary group of specialists from the arts, humanities and sciences at Oxford University * Suitable for a wide non-academic readership, and will appeal to anyone with an interest in mathematics, science and philosophy.
Whether the source is more industry-based or academic research, there certainly appears to be a growing interest in the field of cryptocurrency. The New York Times had a cover story on March 24, 2022, titled "Time to Enter the Crypto Zone?," and they talked about institutional investors pouring billions into digital tokens, salaries being taken in Bitcoins, and even Bitcoin ATMs in grocery stores. Certainly, there have been ups and downs in crypto, but it has a kind of alluring presence that tempts one to include crypto as part of one’s portfolio. Those who are "prime crypto-curious" investors are usually familiar with the tech/pop culture and feel they want to diversify a bit in this fast-moving market. Even universities are beginning to offer more courses and create "Centers on Cryptocurrency." Some universities are even requiring their students who take a crypto course to pay the course tuition via cryptocurrency. In response to the growing interest and fascination about the crypto industry and cryptocurrency in general, Cryptocurrency Concepts, Technology, and Applications brings together many leading worldwide contributors to discuss a broad range of issues associated with cryptocurrency. The book covers a wide array of crypto-related topics, including: Blockchain NFTs Data analytics and AI Crypto crime Crypto industry and regulation Crypto and public choice Consumer confidence Bitcoin and other cryptocurrencies. Presenting various viewpoints on where the crypto industry is heading, this timely book points out both the advantages and limitations of this emerging field. It is an easy-to-read, yet comprehensive, overview of cryptocurrency in the U.S. and international markets.
The book Advances in Distance Learning in Times of Pandemic is devoted to the issues and challenges faced by universities in the field of distance learning in COVID-19 times. It covers both the theoretical and practical aspects connected to distance education. It elaborates on issues regarding distance learning, its challenges, assessment by students and their expectations, the use of tools to improve distance learning, and the functioning of e-learning in the industry 4.0 and society 5.0 eras. The book also devotes a lot of space to the issues of Web 3.0 in university e-learning, quality assurance, and knowledge management. The aim and scope of this book is to draw a holistic picture of ongoing online teaching-activities before and during the lockdown period and present the meaning and future of e-learning from students’ points of view, taking into consideration their attitudes and expectations as well as industry 4.0 and society 5.0 aspects. The book presents the approach to distance learning and how it has changed, especially during a pandemic that revolutionized education. It highlights • the function of online education and how that has changed before and during the pandemic. • how e-learning is beneficial in promoting digital citizenship. • distance learning characteristic in the era of industry 4.0 and society 5.0. • how the era of industry 4.0 treats distance learning as a desirable form of education. The book covers both scientific and educational aspects and can be useful for university-level undergraduate, postgraduate and research-grade courses and can be referred to by anyone interested in exploring the diverse aspects of distance learning. |
![]() ![]() You may like...
Did the Anglicans and Roman Catholics…
Colin Buchanan
Hardcover
A New Lease of Life? - Anglican Clergy…
Tony Neal, Leslie Francis
Paperback
R505
Discovery Miles 5 050
|