![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations
This volume contains English translations of Goedel's chapters on logicism and the antinomies and on the calculi of pure logic, as well as outlines for a chapter on metamathematics. It also comprises most of his reading notes. This book is a testimony to Goedel's understanding of the situation of foundational research in mathematics after his great discovery, the incompleteness theorem of 1931. It is also a source for his views on his logical predecessors, from Leibniz, Frege, and Russell to his own times. Goedel's "own book on foundations," as he called it, is essential reading for logicians and philosophers interested in foundations. Furthermore, it opens a new chapter to the life and achievement of one of the icons of 20th century science and philosophy.
The Nuts and Bolts of Proofs: An Introduction to Mathematical Proofs, Fifth Edition provides basic logic of mathematical proofs and how they work. The book offers techniques for both reading and writing proofs, discusses techniques in proving if/then statements by contrapositive and proofing by contradiction, includes the negation statement, and/or, examines various theorems, such as the if and only-if, equivalence theorems, existence theorems, and the uniqueness theorems. In addition, the use of counter examples, mathematical induction, composite statements including multiple hypothesis and multiple conclusions, and equality of numbers are also covered. The book also provides mathematical topics for practicing proof techniques. Included here are the Cartesian products, indexed families, functions, and relations. The last chapter of the book provides review exercises on various topics. Undergraduate students in engineering and physical science will find this book accessible as well as invaluable.
This book gathers together selected contributions presented at the 3rd Moroccan Andalusian Meeting on Algebras and their Applications, held in Chefchaouen, Morocco, April 12-14, 2018, and which reflects the mathematical collaboration between south European and north African countries, mainly France, Spain, Morocco, Tunisia and Senegal. The book is divided in three parts and features contributions from the following fields: algebraic and analytic methods in associative and non-associative structures; homological and categorical methods in algebra; and history of mathematics. Covering topics such as rings and algebras, representation theory, number theory, operator algebras, category theory, group theory and information theory, it opens up new avenues of study for graduate students and young researchers. The findings presented also appeal to anyone interested in the fields of algebra and mathematical analysis.
This book is dedicated to the life and work of the mathematician Joachim Lambek (1922-2014). The editors gather together noted experts to discuss the state of the art of various of Lambek's works in logic, category theory, and linguistics and to celebrate his contributions to those areas over the course of his multifaceted career. After early work in combinatorics and elementary number theory, Lambek became a distinguished algebraist (notably in ring theory). In the 1960s, he began to work in category theory, categorical algebra, logic, proof theory, and foundations of computability. In a parallel development, beginning in the late 1950s and for the rest of his career, Lambek also worked extensively in mathematical linguistics and computational approaches to natural languages. He and his collaborators perfected production and type grammars for numerous natural languages. Lambek grammars form an early noncommutative precursor to Girard's linear logic. In a surprising development (2000), he introduced a novel and deeper algebraic framework (which he called pregroup grammars) for analyzing natural language, along with algebraic, higher category, and proof-theoretic semantics. This book is of interest to mathematicians, logicians, linguists, and computer scientists.
This edited volume presents a fascinating collection of lecture notes focusing on differential equations from two viewpoints: formal calculus (through the theory of Groebner bases) and geometry (via quiver theory). Groebner bases serve as effective models for computation in algebras of various types. Although the theory of Groebner bases was developed in the second half of the 20th century, many works on computational methods in algebra were published well before the introduction of the modern algebraic language. Since then, new algorithms have been developed and the theory itself has greatly expanded. In comparison, diagrammatic methods in representation theory are relatively new, with the quiver varieties only being introduced - with big impact - in the 1990s. Divided into two parts, the book first discusses the theory of Groebner bases in their commutative and noncommutative contexts, with a focus on algorithmic aspects and applications of Groebner bases to analysis on systems of partial differential equations, effective analysis on rings of differential operators, and homological algebra. It then introduces representations of quivers, quiver varieties and their applications to the moduli spaces of meromorphic connections on the complex projective line. While no particular reader background is assumed, the book is intended for graduate students in mathematics, engineering and related fields, as well as researchers and scholars.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the ninth publication in the Lecture Notes in Logic series, Martin Otto gives an introduction to finite model theory that indicates the main ideas and lines of inquiry that motivate research in this area. Particular attention is paid to bounded variable infinitary logics, with and without counting quantifiers, related fixed-point logics, and the corresponding fragments of Ptime. The relations with Ptime exhibit the fruitful exchange between ideas from logic and from complexity theory that is characteristic of finite model theory.
Laws of Form is a seminal work in foundations of logic, mathematics and philosophy published by G Spencer-Brown in 1969. The book provides a new point of view on form and the role of distinction, markedness and the absence of distinction (the unmarked state) in the construction of any universe. A conference was held August 8-10, 2019 at the Old Library, Liverpool University, 19 Abercromby Square, L697ZN, UK to celebrate the 50th anniversary of the publication of Laws of Form and to remember George Spencer-Brown, its author. The book is a collection of papers introducing and extending Laws of Form written primarily by people who attended the conference in 2019.
The book's objectives are to expose students to analyzing and formulating various patterns such as linear, quadratic, geometric, piecewise, alternating, summation-type, product-type, recursive and periodic patterns. The book will present various patterns graphically and analytically and show the connections between them. Graphical presentations include patterns at same scale, patterns at diminishing scale and alternating patterns.The book's goals are to train and expand students' analytical skills by presenting numerous repetitive-type problems that will lead to formulating results inductively and to the proof by induction method. These will start with formulating basic sequences and piecewise functions and transition to properties of Pascal's Triangle that are horizontally and diagonally oriented and formulating solutions to recursive sequences. The book will start with relatively straight forward problems and gradually transition to more challenging problems and open-ended research questions. The book's aims are to prepare students to establish a base of recognition and formulation of patterns that will navigate to study further mathematics such as Calculus, Discrete Mathematics, Matrix Algebra, Abstract Algebra, Difference Equations, and to potential research projects. The primary aims out of all are to make mathematics accessible and multidisciplinary for students with different backgrounds and from various disciplines.
The book's objectives are to expose students to analyzing and formulating various patterns such as linear, quadratic, geometric, piecewise, alternating, summation-type, product-type, recursive and periodic patterns. The book will present various patterns graphically and analytically and show the connections between them. Graphical presentations include patterns at same scale, patterns at diminishing scale and alternating patterns.The book's goals are to train and expand students' analytical skills by presenting numerous repetitive-type problems that will lead to formulating results inductively and to the proof by induction method. These will start with formulating basic sequences and piecewise functions and transition to properties of Pascal's Triangle that are horizontally and diagonally oriented and formulating solutions to recursive sequences. The book will start with relatively straight forward problems and gradually transition to more challenging problems and open-ended research questions. The book's aims are to prepare students to establish a base of recognition and formulation of patterns that will navigate to study further mathematics such as Calculus, Discrete Mathematics, Matrix Algebra, Abstract Algebra, Difference Equations, and to potential research projects. The primary aims out of all are to make mathematics accessible and multidisciplinary for students with different backgrounds and from various disciplines.
In this volume, different aspects of logics for dependence and independence are discussed, including both the logical and computational aspects of dependence logic, and also applications in a number of areas, such as statistics, social choice theory, databases, and computer security. The contributing authors represent leading experts in this relatively new field, each of whom was invited to write a chapter based on talks given at seminars held at the Schloss Dagstuhl Leibniz Center for Informatics in Wadern, Germany (in February 2013 and June 2015) and an Academy Colloquium at the Royal Netherlands Academy of Arts and Sciences (March 2014). Altogether, these chapters provide the most up-to-date look at this developing and highly interdisciplinary field and will be of interest to a broad group of logicians, mathematicians, statisticians, philosophers, and scientists. Topics covered include a comprehensive survey of many propositional, modal, and first-order variants of dependence logic; new results concerning expressive power of several variants of dependence logic with different sets of logical connectives and generalized dependence atoms; connections between inclusion logic and the least-fixed point logic; an overview of dependencies in databases by addressing the relationships between implication problems for fragments of statistical conditional independencies, embedded multivalued dependencies, and propositional logic; various Markovian models used to characterize dependencies and causality among variables in multivariate systems; applications of dependence logic in social choice theory; and an introduction to the theory of secret sharing, pointing out connections to dependence and independence logic.
The philosophy of computer science is concerned with issues that arise from reflection upon the nature and practice of the discipline of computer science. This book presents an approach to the subject that is centered upon the notion of computational artefact. It provides an analysis of the things of computer science as technical artefacts. Seeing them in this way enables the application of the analytical tools and concepts from the philosophy of technology to the technical artefacts of computer science. With this conceptual framework the author examines some of the central philosophical concerns of computer science including the foundations of semantics, the logical role of specification, the nature of correctness, computational ontology and abstraction, formal methods, computational epistemology and explanation, the methodology of computer science, and the nature of computation. The book will be of value to philosophers and computer scientists.
Digital forensics plays a crucial role in identifying, analysing, and presenting cyber threats as evidence in a court of law. Artificial intelligence, particularly machine learning and deep learning, enables automation of the digital investigation process. This book provides an in-depth look at the fundamental and advanced methods in digital forensics. It also discusses how machine learning and deep learning algorithms can be used to detect and investigate cybercrimes. This book demonstrates digital forensics and cyber-investigating techniques with real-world applications. It examines hard disk analytics and style architectures, including Master Boot Record and GUID Partition Table as part of the investigative process. It also covers cyberattack analysis in Windows, Linux, and network systems using virtual machines in real-world scenarios. Digital Forensics in the Era of Artificial Intelligence will be helpful for those interested in digital forensics and using machine learning techniques in the investigation of cyberattacks and the detection of evidence in cybercrimes.
Digital forensics plays a crucial role in identifying, analysing, and presenting cyber threats as evidence in a court of law. Artificial intelligence, particularly machine learning and deep learning, enables automation of the digital investigation process. This book provides an in-depth look at the fundamental and advanced methods in digital forensics. It also discusses how machine learning and deep learning algorithms can be used to detect and investigate cybercrimes. This book demonstrates digital forensics and cyber-investigating techniques with real-world applications. It examines hard disk analytics and style architectures, including Master Boot Record and GUID Partition Table as part of the investigative process. It also covers cyberattack analysis in Windows, Linux, and network systems using virtual machines in real-world scenarios. Digital Forensics in the Era of Artificial Intelligence will be helpful for those interested in digital forensics and using machine learning techniques in the investigation of cyberattacks and the detection of evidence in cybercrimes.
This volume is the first ever collection devoted to the field of proof-theoretic semantics. Contributions address topics including the systematics of introduction and elimination rules and proofs of normalization, the categorial characterization of deductions, the relation between Heyting's and Gentzen's approaches to meaning, knowability paradoxes, proof-theoretic foundations of set theory, Dummett's justification of logical laws, Kreisel's theory of constructions, paradoxical reasoning, and the defence of model theory. The field of proof-theoretic semantics has existed for almost 50 years, but the term itself was proposed by Schroeder-Heister in the 1980s. Proof-theoretic semantics explains the meaning of linguistic expressions in general and of logical constants in particular in terms of the notion of proof. This volume emerges from presentations at the Second International Conference on Proof-Theoretic Semantics in Tubingen in 2013, where contributing authors were asked to provide a self-contained description and analysis of a significant research question in this area. The contributions are representative of the field and should be of interest to logicians, philosophers, and mathematicians alike.
This edited work presents contemporary mathematical practice in the foundational mathematical theories, in particular set theory and the univalent foundations. It shares the work of significant scholars across the disciplines of mathematics, philosophy and computer science. Readers will discover systematic thought on criteria for a suitable foundation in mathematics and philosophical reflections around the mathematical perspectives. The volume is divided into three sections, the first two of which focus on the two most prominent candidate theories for a foundation of mathematics. Readers may trace current research in set theory, which has widely been assumed to serve as a framework for foundational issues, as well as new material elaborating on the univalent foundations, considering an approach based on homotopy type theory (HoTT). The third section then builds on this and is centred on philosophical questions connected to the foundations of mathematics. Here, the authors contribute to discussions on foundational criteria with more general thoughts on the foundations of mathematics which are not connected to particular theories. This book shares the work of some of the most important scholars in the fields of set theory (S. Friedman), non-classical logic (G. Priest) and the philosophy of mathematics (P. Maddy). The reader will become aware of the advantages of each theory and objections to it as a foundation, following the latest and best work across the disciplines and it is therefore a valuable read for anyone working on the foundations of mathematics or in the philosophy of mathematics.
Introduces the GUHA method of mechanizing hypothesis formation as a data mining tool. Presents examples of data mining with enhanced association rules, histograms, contingency tables and action rules. Provides examples of data mining for exception rules and examples of subgroups discovery. Outlines possibilities of GUHA in business intelligence and big data. Overviews related theoretical results and challenges related to mechanizing hypothesis formation.
Combinatorics and Number Theory of Counting Sequences is an introduction to the theory of finite set partitions and to the enumeration of cycle decompositions of permutations. The presentation prioritizes elementary enumerative proofs. Therefore, parts of the book are designed so that even those high school students and teachers who are interested in combinatorics can have the benefit of them. Still, the book collects vast, up-to-date information for many counting sequences (especially, related to set partitions and permutations), so it is a must-have piece for those mathematicians who do research on enumerative combinatorics. In addition, the book contains number theoretical results on counting sequences of set partitions and permutations, so number theorists who would like to see nice applications of their area of interest in combinatorics will enjoy the book, too. Features The Outlook sections at the end of each chapter guide the reader towards topics not covered in the book, and many of the Outlook items point towards new research problems. An extensive bibliography and tables at the end make the book usable as a standard reference. Citations to results which were scattered in the literature now become easy, because huge parts of the book (especially in parts II and III) appear in book form for the first time.
This book contains twenty-one essays by leading authorities on aspects of contemporary logic, ranging from foundations of set theory to applications of logic in computing and in the theory of fields. In those parts of logic closest to computer science, the gap between foundations and applications is often small, as illustrated by three essays on the proof theory of non-classical logics. There are also chapters on the lambda calculus, on relating logic programs to inductive definitions, on Buechi and Presburger arithmetics, and on definability in Lindenbaum algebras. Aspects of constructive mathematics discussed are embeddings of Heyting algebras and proofs in mathematical anslysis. Set theory is well covered with six chapters discussing Cohen forcing, Baire category, determinancy, Nash-Williams theory, critical points (and the remarkable connection between them and properties of left distributive operations) and independent structures. The longest chapter in the book is a survey of 0-minimal structures, by Lou van den Dries; during the last ten years these structures have come to take a central place in applications of model theory to fields and function theory, and this chapter is the first broad survey of the area. Other chapters illustrate how to apply model theory to field theory, complex geometry and groups, and how to recover from its automorphism group. Finally, one chapter applies to the theory of toric varieties to solve problems about many-valued logics.
"Knot theory is a fascinating mathematical subject, with multiple links to theoretical physics. This enyclopedia is filled with valuable information on a rich and fascinating subject." - Ed Witten, Recipient of the Fields Medal "I spent a pleasant afternoon perusing the Encyclopedia of Knot Theory. It's a comprehensive compilation of clear introductions to both classical and very modern developments in the field. It will be a terrific resource for the accomplished researcher, and will also be an excellent way to lure students, both graduate and undergraduate, into the field." - Abigail Thompson, Distinguished Professor of Mathematics at University of California, Davis Knot theory has proven to be a fascinating area of mathematical research, dating back about 150 years. Encyclopedia of Knot Theory provides short, interconnected articles on a variety of active areas in knot theory, and includes beautiful pictures, deep mathematical connections, and critical applications. Many of the articles in this book are accessible to undergraduates who are working on research or taking an advanced undergraduate course in knot theory. More advanced articles will be useful to graduate students working on a related thesis topic, to researchers in another area of topology who are interested in current results in knot theory, and to scientists who study the topology and geometry of biopolymers. Features Provides material that is useful and accessible to undergraduates, postgraduates, and full-time researchers Topics discussed provide an excellent catalyst for students to explore meaningful research and gain confidence and commitment to pursuing advanced degrees Edited and contributed by top researchers in the field of knot theory
This book outlines a vast array of techniques and methods regarding model categories, without focussing on the intricacies of the proofs. Quillen model categories are a fundamental tool for the understanding of homotopy theory. While many introductions to model categories fall back on the same handful of canonical examples, the present book highlights a large, self-contained collection of other examples which appear throughout the literature. In particular, it collects a highly scattered literature into a single volume. The book is aimed at anyone who uses, or is interested in using, model categories to study homotopy theory. It is written in such a way that it can be used as a reference guide for those who are already experts in the field. However, it can also be used as an introduction to the theory for novices.
This book focuses on the game-theoretical semantics and epistemic logic of Jaakko Hintikka. Hintikka was a prodigious and esteemed philosopher and logician, and his death in August 2015 was a huge loss to the philosophical community. This book, whose chapters have been in preparation for several years, is dedicated to the work of Jaako Hintikka, and to his memory. This edited volume consists of 23 contributions from leading logicians and philosophers, who discuss themes that span across the entire range of Hintikka's career. Semantic Representationalism, Logical Dialogues, Knowledge and Epistemic logic are among some of the topics covered in this book's chapters. The book should appeal to students, scholars and teachers who wish to explore the philosophy of Jaako Hintikka.
There are thousands of books relating to poker, blackjack, roulette and baccarat, including strategy guides, statistical analysis, psychological studies, and much more. However, there are no books on Pell, Rouleno, Street Dice, and many other games that have had a short life in casinos! While this is understandable - most casino gamblers have not heard of these games, and no one is currently playing them - their absence from published works means that some interesting mathematics and gaming history are at risk of being lost forever. Table games other than baccarat, blackjack, craps, and roulette are called carnival games, as a nod to their origin in actual traveling or seasonal carnivals. Mathematics of Casino Carnival Games is a focused look at these games and the mathematics at their foundation. Features * Exercises, with solutions, are included for readers who wish to practice the ideas presented * Suitable for a general audience with an interest in the mathematics of gambling and games * Goes beyond providing practical 'tips' for gamblers, and explores the mathematical principles that underpin gambling games
Architecture of Mathematics describes the logical structure of Mathematics from its foundations to its real-world applications. It describes the many interweaving relationships between different areas of mathematics and its practical applications, and as such provides unique reading for professional mathematicians and nonmathematicians alike. This book can be a very important resource both for the teaching of mathematics and as a means to outline the research links between different subjects within and beyond the subject. Features All notions and properties are introduced logically and sequentially, to help the reader gradually build understanding. Focusses on illustrative examples that explain the meaning of mathematical objects and their properties. Suitable as a supplementary resource for teaching undergraduate mathematics, and as an aid to interdisciplinary research. Forming the reader's understanding of Mathematics as a unified science, the book helps to increase his general mathematical culture.
This book presents a new nominalistic philosophy of mathematics: semantic conventionalism. Its central thesis is that mathematics should be founded on the human ability to create language - and specifically, the ability to institute conventions for the truth conditions of sentences. This philosophical stance leads to an alternative way of practicing mathematics: instead of "building" objects out of sets, a mathematician should introduce new syntactical sentence types, together with their truth conditions, as he or she develops a theory. Semantic conventionalism is justified first through criticism of Cantorian set theory, intuitionism, logicism, and predicativism; then on its own terms; and finally, exemplified by a detailed reconstruction of arithmetic and real analysis. Also included is a simple solution to the liar paradox and the other paradoxes that have traditionally been recognized as semantic. And since it is argued that mathematics is semantics, this solution also applies to Russell's paradox and the other mathematical paradoxes of self-reference. In addition to philosophers who care about the metaphysics and epistemology of mathematics or the paradoxes of self-reference, this book should appeal to mathematicians interested in alternative approaches. |
You may like...
Policies, Practices, and Protocols for…
Abir El Shaban, Reima Abobaker
Hardcover
R5,333
Discovery Miles 53 330
Education and Language in the…
Lorraine Pe Symaco, Francisco P. Dumanig
Hardcover
R2,282
Discovery Miles 22 820
Learning and Teaching Writing Online…
Mary Deane, Teresa Guasch
Hardcover
R3,393
Discovery Miles 33 930
Van Short Whist Tot Contract Bridge - De…
Hans Secelle
Hardcover
Forward with Classics - Classical…
Arlene Holmes-Henderson, Steven Hunt, …
Hardcover
R4,645
Discovery Miles 46 450
|