![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations
This volume is based on the papers that were presented at the International Conference Model-Based Reasoning: Scientific Discovery, Technological Innovation, Values' (MBR'01), held at the Collegio Ghislieri, University of Pavia, Pavia, Italy, in May 2001. The previous volume Model-Based Reasoning in Scientific Discovery, edited by L. Magnani, N.J. Nersessian, and P. Thagard (Kluwer Academic/Plenum Publishers, New York, 1999; Chinese edition, China Science and Technology Press, Beijing, 2000), was based on the papers presented at the first model-based reasoning' international conference, held at the same venue in December 1998. The presentations given at the Conference explore how scientific thinking uses models and exploratory reasoning to produce creative changes in theories and concepts. Some address the problem of model-based reasoning in ethics, especially pertaining to science and technology, and stress some aspects of model-based reasoning in technological innovation. The study of diagnostic, visual, spatial, analogical, and temporal reasoning has demonstrated that there are many ways of performing intelligent and creative reasoning that cannot be described with the help only of traditional notions of reasoning such as classical logic. Understanding the contribution of modeling practices to discovery and conceptual change in science requires expanding scientific reasoning to include complex forms of creative reasoning that are not always successful and can lead to incorrect solutions. The study of these heuristic ways of reasoning is situated at the crossroads of philosophy, artificial intelligence, cognitive psychology, and logic; that is, at the heart of cognitivescience. There are several key ingredients common to the various forms of model-based reasoning. The term model' comprises both internal and external representations. The models are intended as interpretations of target physical systems, processes, phenomena, or situations. The models are retrieved or constructed on the basis of potentially satisfying salient constraints of the target domain. Moreover, in the modeling process, various forms of abstraction are used. Evaluation and adaptation take place in light of structural, causal, and/or functional constraints. Model simulation can be used to produce new states and enable evaluation of behaviors and other factors. The various contributions of the book are written by interdisciplinary researchers who are active in the area of creative reasoning in science and technology, and are logically and computationally oriented: the most recent results and achievements about the topics above are illustrated in detail in the papers.
This book presents the first algebraic treatment of quasi-truth fuzzy logic and covers the algebraic foundations of many-valued logic. It offers a comprehensive account of basic techniques and reports on important results showing the pivotal role played by perfect many-valued algebras (MV-algebras). It is well known that the first-order predicate Lukasiewicz logic is not complete with respect to the canonical set of truth values. However, it is complete with respect to all linearly ordered MV -algebras. As there are no simple linearly ordered MV-algebras in this case, infinitesimal elements of an MV-algebra are allowed to be truth values. The book presents perfect algebras as an interesting subclass of local MV-algebras and provides readers with the necessary knowledge and tools for formalizing the fuzzy concept of quasi true and quasi false. All basic concepts are introduced in detail to promote a better understanding of the more complex ones. It is an advanced and inspiring reference-guide for graduate students and researchers in the field of non-classical many-valued logics.
How does Russell's realist conception of the proposition and its
constituents inform the techniques for analysis which he adopted in
mathematics? Jolen Galaugher's book sheds light on this perplexing
issue. In this book, Galaugher provides a detailed treatment of
Russell's early conception of analysis in the light of the
philosophical doctrines to which it answered, and the demands
imposed by existing mathematics on his early logicist program. She
ties together the philosophical commitments which occasioned
Russell's break with idealism and the problems which guided his
selection of technical apparatus in his embrace of logicism. The
result is a detailed synthesis of the primary materials from the
emergence of Russell's realism in 1898 to his landmark theory of
descriptions in 1905. Galaugher's broad thesis is that although
Russell adopted increasingly refined techniques by which to carry
out his logical analyses and avoid the Contradiction, the most
crucial aspects of his philosophical conception of logical analysis
were retained.
Suitable for anyone who enjoys logic puzzles Could be used as a companion book for a course on mathematical proof. The puzzles feature the same issues of problem-solving and proof-writing. For anyone who enjoys logical puzzles. For anyone interested in legal reasoning. For anyone who loves the game of baseball.
Topos Theory is an important branch of mathematical logic of interest to theoretical computer scientists, logicians and philosophers who study the foundations of mathematics, and to those working in differential geometry and continuum physics. This compendium contains material that was previously available only in specialist journals. This is likely to become the standard reference work for all those interested in the subject.
Fuzzy logics are many-valued logics that are well suited to reasoning in the context of vagueness. They provide the basis for the wider field of Fuzzy Logic, encompassing diverse areas such as fuzzy control, fuzzy databases, and fuzzy mathematics. This book provides an accessible and up-to-date introduction to this fast-growing and increasingly popular area. It focuses in particular on the development and applications of "proof-theoretic" presentations of fuzzy logics; the result of more than ten years of intensive work by researchers in the area, including the authors. In addition to providing alternative elegant presentations of fuzzy logics, proof-theoretic methods are useful for addressing theoretical problems (including key standard completeness results) and developing efficient deduction and decision algorithms. Proof-theoretic presentations also place fuzzy logics in the broader landscape of non-classical logics, revealing deep relations with other logics studied in Computer Science, Mathematics, and Philosophy. The book builds methodically from the semantic origins of fuzzy logics to proof-theoretic presentations such as Hilbert and Gentzen systems, introducing both theoretical and practical applications of these presentations.
Stig Kanger (1924-1988) made important contributions to logic and formal philosophy. Kanger's most original achievements were in the areas of general proof theory, the semantics of modal and deontic logic, and the logical analysis of the concept of rights. But he contributed significantly to action theory, preference logic and the theory of measurement as well. This is the second of two volumes dedicated to the work of Stig Kanger. The first volume is a complete collection of Kanger's philosophical papers. The present volume contains critical essays on the various aspects of Kanger's work as well as some biographical sketches. Lennart A...qvist, Jan Berg, Brian Chellas, Anatoli Degtyarev, Lars Gustafsson, SAren HalldA(c)n, Kaj BA, rge Hansen, Sven Ove Hansson, Risto Hilpinen, Jaakko Hintikka, Ghita HolmstrAm-Hintikka, Lars Lindahl, Sten LindstrAm, Ingmar PArn, Dag Prawitz, Wlodek Rabinowicz, Krister Segerberg, Amartya Sen, SAren Stenlund, GAran Sundholm, and Andrei Voronkov have contributed to this volume.
* Written by an interdisciplinary group of specialists from the arts, humanities and sciences at Oxford University * Suitable for a wide non-academic readership, and will appeal to anyone with an interest in mathematics, science and philosophy.
The aim of this book volume is to explain the importance of Markov state models to molecular simulation, how they work, and how they can be applied to a range of problems. The Markov state model (MSM) approach aims to address two key challenges of molecular simulation: 1) How to reach long timescales using short simulations of detailed molecular models. 2) How to systematically gain insight from the resulting sea of data. MSMs do this by providing a compact representation of the vast conformational space available to biomolecules by decomposing it into states sets of rapidly interconverting conformations and the rates of transitioning between states.This kinetic definition allows one to easily vary the temporal and spatial resolution of an MSM from high-resolution models capable of quantitative agreement with (or prediction of) experiment to low-resolution models that facilitate understanding. Additionally, MSMs facilitate the calculation of quantities that are difficult to obtain from more direct MD analyses, such as the ensemble of transition pathways. This book introduces the mathematical foundations of Markov models, how they can be used to analyze simulations and drive efficient simulations, and some of the insights these models have yielded in a variety of applications of molecular simulation."
The book Advances in Distance Learning in Times of Pandemic is devoted to the issues and challenges faced by universities in the field of distance learning in COVID-19 times. It covers both the theoretical and practical aspects connected to distance education. It elaborates on issues regarding distance learning, its challenges, assessment by students and their expectations, the use of tools to improve distance learning, and the functioning of e-learning in the industry 4.0 and society 5.0 eras. The book also devotes a lot of space to the issues of Web 3.0 in university e-learning, quality assurance, and knowledge management. The aim and scope of this book is to draw a holistic picture of ongoing online teaching-activities before and during the lockdown period and present the meaning and future of e-learning from students’ points of view, taking into consideration their attitudes and expectations as well as industry 4.0 and society 5.0 aspects. The book presents the approach to distance learning and how it has changed, especially during a pandemic that revolutionized education. It highlights • the function of online education and how that has changed before and during the pandemic. • how e-learning is beneficial in promoting digital citizenship. • distance learning characteristic in the era of industry 4.0 and society 5.0. • how the era of industry 4.0 treats distance learning as a desirable form of education. The book covers both scientific and educational aspects and can be useful for university-level undergraduate, postgraduate and research-grade courses and can be referred to by anyone interested in exploring the diverse aspects of distance learning.
This book features a series of lectures that explores three different fields in which functor homology (short for homological algebra in functor categories) has recently played a significant role. For each of these applications, the functor viewpoint provides both essential insights and new methods for tackling difficult mathematical problems. In the lectures by Aurelien Djament, polynomial functors appear as coefficients in the homology of infinite families of classical groups, e.g. general linear groups or symplectic groups, and their stabilization. Djament's theorem states that this stable homology can be computed using only the homology with trivial coefficients and the manageable functor homology. The series includes an intriguing development of Scorichenko's unpublished results. The lectures by Wilberd van der Kallen lead to the solution of the general cohomological finite generation problem, extending Hilbert's fourteenth problem and its solution to the context of cohomology. The focus here is on the cohomology of algebraic groups, or rational cohomology, and the coefficients are Friedlander and Suslin's strict polynomial functors, a conceptual form of modules over the Schur algebra. Roman Mikhailov's lectures highlight topological invariants: homoto py and homology of topological spaces, through derived functors of polynomial functors. In this regard the functor framework makes better use of naturality, allowing it to reach calculations that remain beyond the grasp of classical algebraic topology. Lastly, Antoine Touze's introductory course on homological algebra makes the book accessible to graduate students new to the field. The links between functor homology and the three fields mentioned above offer compelling arguments for pushing the development of the functor viewpoint. The lectures in this book will provide readers with a feel for functors, and a valuable new perspective to apply to their favourite problems.
A thorough introduction to Borel sets and measurable selections, acting as a stepping stone to descriptive set theory by presenting such important techniques as universal sets, prewellordering, scales, etc. It contains significant applications to other branches of mathematics and serves as a self-contained reference accessible by mathematicians in many different disciplines. Written in an easily understandable style, and using only naive set theory, general topology, analysis, and algebra, it is thus well suited for graduates exploring areas of mathematics for their research and for those requiring Borel sets and measurable selections in their work.
Looking at a sequence of zeros and ones, we often feel that it is not random, that is, it is not plausible as an outcome of fair coin tossing. Why? The answer is provided by algorithmic information theory: because the sequence is compressible, that is, it has small complexity or, equivalently, can be produced by a short program. This idea, going back to Solomonoff, Kolmogorov, Chaitin, Levin, and others, is now the starting point of algorithmic information theory. The first part of this book is a textbook-style exposition of the basic notions of complexity and randomness; the second part covers some recent work done by participants of the "Kolmogorov seminar" in Moscow (started by Kolmogorov himself in the 1980s) and their colleagues. This book contains numerous exercises (embedded in the text) that will help readers to grasp the material.
The book presents a thoroughly elaborated logical theory of generalized truth-values understood as subsets of some established set of (basic) truth values. After elucidating the importance of the very notion of a truth value in logic and philosophy, we examine some possible ways of generalizing this notion. The useful four-valued logic of first-degree entailment by Nuel Belnap and the notion of a bilattice (a lattice of truth values with two ordering relations) constitute the basis for further generalizations. By doing so we elaborate the idea of a multilattice, and most notably, a trilattice of truth values - a specific algebraic structure with information ordering and two distinct logical orderings, one for truth and another for falsity. Each logical order not only induces its own logical vocabulary, but determines also its own entailment relation. We consider both semantic and syntactic ways of formalizing these relations and construct various logical calculi.
For a brief time in history, it was possible to imagine that a sufficiently advanced intellect could, given sufficient time and resources, in principle understand how to mathematically prove everything that was true. They could discern what math corresponds to physical laws, and use those laws to predict anything that happens before it happens. That time has passed. Goedel's undecidability results (the incompleteness theorems), Turing's proof of non-computable values, the formulation of quantum theory, chaos, and other developments over the past century have shown that there are rigorous arguments limiting what we can prove, compute, and predict. While some connections between these results have come to light, many remain obscure, and the implications are unclear. Are there, for example, real consequences for physics - including quantum mechanics - of undecidability and non-computability? Are there implications for our understanding of the relations between agency, intelligence, mind, and the physical world? This book, based on the winning essays from the annual FQXi competition, contains ten explorations of Undecidability, Uncomputability, and Unpredictability. The contributions abound with connections, implications, and speculations while undertaking rigorous but bold and open-minded investigation of the meaning of these constraints for the physical world, and for us as humans.
This book contains the courses given at the Fifth School on Complex Systems held at Santiago, Chile, from 9th .to 13th December 1996. At this school met researchers working on areas related with recent trends in Complex Systems, which include dynamical systems, cellular automata, symbolic dynamics, spatial systems, statistical physics and thermodynamics. Scientists working in these subjects come from several areas: pure and applied mathematics, physics, biology, computer science and electrical engineering. Each contribution is devoted to one of the above subjects. In most cases they are structured as surveys, presenting at the same time an original point of view about the topic and showing mostly new results. The paper of Bruno Durand presents the state of the art on the relationships between the notions of surjectivity, injectivity and reversibility in cellular automata when finite, infinite or periodic configurations are considered, also he discusses decidability problems related with the classification of cellular automata as well as global properties mentioned above. The paper of Eric Goles and Martin Matamala gives a uniform presentation of simulations of Turing machines by cellular automata. The main ingredient is the encoding function which must be fixed for all Turing machine. In this context known results are revised and new results are presented.
Fuzzy Sets in Decision Analysis, Operations Research and Statistics includes chapters on fuzzy preference modeling, multiple criteria analysis, ranking and sorting methods, group decision-making and fuzzy game theory. It also presents optimization techniques such as fuzzy linear and non-linear programming, applications to graph problems and fuzzy combinatorial methods such as fuzzy dynamic programming. In addition, the book also accounts for advances in fuzzy data analysis, fuzzy statistics, and applications to reliability analysis. These topics are covered within four parts: Decision Making, Mathematical Programming, Statistics and Data Analysis, and Reliability, Maintenance and Replacement. The scope and content of the book has resulted from multiple interactions between the editor of the volume, the series editors, the series advisory board, and experts in each chapter area. Each chapter was written by a well-known researcher on the topic and reviewed by other experts in the area. These expert reviewers sometimes became co-authors because of the extent of their contribution to the chapter. As a result, twenty-five authors from twelve countries and four continents were involved in the creation of the 13 chapters, which enhances the international character of the project and gives an idea of how carefully the Handbook has been developed.
This monograph is a defence of the Fregean take on logic. The author argues that Freges projects, in logic and philosophy of language, are essentially connected and that the formalist shift produced by the work of Peano, Boole and Schroeder and continued by Hilbert and Tarski is completely alien to Frege's approach in the Begriffsschrift. A central thesis of the book is that judgeable contents, i.e. propositions, are the primary bearers of logical properties, which makes logic embedded in our conceptual system. This approach allows coherent and correct definitions of logical constants, logical consequence, and truth and connects their use to the practices of rational agents in science and everyday life.
Whether the source is more industry-based or academic research, there certainly appears to be a growing interest in the field of cryptocurrency. The New York Times had a cover story on March 24, 2022, titled "Time to Enter the Crypto Zone?," and they talked about institutional investors pouring billions into digital tokens, salaries being taken in Bitcoins, and even Bitcoin ATMs in grocery stores. Certainly, there have been ups and downs in crypto, but it has a kind of alluring presence that tempts one to include crypto as part of one’s portfolio. Those who are "prime crypto-curious" investors are usually familiar with the tech/pop culture and feel they want to diversify a bit in this fast-moving market. Even universities are beginning to offer more courses and create "Centers on Cryptocurrency." Some universities are even requiring their students who take a crypto course to pay the course tuition via cryptocurrency. In response to the growing interest and fascination about the crypto industry and cryptocurrency in general, Cryptocurrency Concepts, Technology, and Applications brings together many leading worldwide contributors to discuss a broad range of issues associated with cryptocurrency. The book covers a wide array of crypto-related topics, including: Blockchain NFTs Data analytics and AI Crypto crime Crypto industry and regulation Crypto and public choice Consumer confidence Bitcoin and other cryptocurrencies. Presenting various viewpoints on where the crypto industry is heading, this timely book points out both the advantages and limitations of this emerging field. It is an easy-to-read, yet comprehensive, overview of cryptocurrency in the U.S. and international markets.
Whether the source is more industry-based or academic research, there certainly appears to be a growing interest in the field of cryptocurrency. The New York Times had a cover story on March 24, 2022, titled "Time to Enter the Crypto Zone?," and they talked about institutional investors pouring billions into digital tokens, salaries being taken in Bitcoins, and even Bitcoin ATMs in grocery stores. Certainly, there have been ups and downs in crypto, but it has a kind of alluring presence that tempts one to include crypto as part of one’s portfolio. Those who are "prime crypto-curious" investors are usually familiar with the tech/pop culture and feel they want to diversify a bit in this fast-moving market. Even universities are beginning to offer more courses and create "Centers on Cryptocurrency." Some universities are even requiring their students who take a crypto course to pay the course tuition via cryptocurrency. In response to the growing interest and fascination about the crypto industry and cryptocurrency in general, Cryptocurrency Concepts, Technology, and Applications brings together many leading worldwide contributors to discuss a broad range of issues associated with cryptocurrency. The book covers a wide array of crypto-related topics, including: Blockchain NFTs Data analytics and AI Crypto crime Crypto industry and regulation Crypto and public choice Consumer confidence Bitcoin and other cryptocurrencies. Presenting various viewpoints on where the crypto industry is heading, this timely book points out both the advantages and limitations of this emerging field. It is an easy-to-read, yet comprehensive, overview of cryptocurrency in the U.S. and international markets.
The book contains 8 detailed expositions of the lectures given at the Kaikoura 2000 Workshop on Computability, Complexity, and Computational Algebra. Topics covered include basic models and questions of complexity theory, the Blum-Shub-Smale model of computation, probability theory applied to algorithmics (randomized alogrithms), parametric complexity, Kolmogorov complexity of finite strings, computational group theory, counting problems, and canonical models of ZFC providing a solution to continuum hypothesis. The text addresses students in computer science or mathematics, and professionals in these areas who seek a complete, but gentle introduction to a wide range of techniques, concepts, and research horizons in the area of computational complexity in a broad sense.
In this book we develop powerful techniques based on formal methods for the verification of correctness, consistency and safety properties related to dynamic reconfiguration and communication in complex distributed systems. In particular, static analysis techniques based on types and type systems are an adequate methodology considering their success in guaranteeing not only basic safety properties, but also more sophisticated ones like deadlock or lock freedom in concurrent settings.The main contributions of this book are twofold. i) We design a type system for a concurrent object-oriented calculus to statically ensure consistency of dynamic reconfigurations. ii) We define an encoding of the session pi-calculus, which models communication in distributed systems, into the standard typed pi-calculus. We use this encoding to derive properties like type safety and progress in the session pi-calculus by exploiting the corresponding properties in the standard typed pi-calculus.
During his lifetime, Kurt Goedel was not well known outside the professional world of mathematicians, philosophers and theoretical physicists. Early in his career, for his doctoral thesis and then for his Habilitation (Dr.Sci.), he wrote earthshaking articles on the completeness and provability of mathematical-logical systems, upsetting the hypotheses of the most famous mathematicians/philosophers of the time. He later delved into theoretical physics, finding a unique solution to Einstein's equations for gravity, the 'Goedel Universe', and made contributions to philosophy, the guiding theme of his life. This book includes more details about the context of Goedel's life than are found in earlier biographies, while avoiding an elaborate treatment of his mathematical/scientific/philosophical works, which have been described in great detail in other books. In this way, it makes him and his times more accessible to general readers, and will allow them to appreciate the lasting effects of Goedel's contributions (the latter in a more up-to-date context than in previous biographies, many of which were written 15-25 years ago). His work spans or is relevant to a wide spectrum of intellectual endeavor, and this is emphasized in the book, with recent examples. This biography also examines possible sources of his unusual personality, which combined mathematical genius with an almost childlike naivete concerning everyday life, and striking scientific innovations with timidity and hesitancy in practical matters. How he nevertheless had a long and successful career, inspiring many younger scholars along the way, with the help of his loyal wife Adele and some of his friends, is a fascinating story in human nature.
|
![]() ![]() You may like...
Organometallics in Environment and…
Astrid Sigel, Helmut Sigel, …
Hardcover
R3,592
Discovery Miles 35 920
|