![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations
Mathematical Puzzle Tales from Mount Olympus uses fascinating tales from Greek Mythology as the background for introducing mathematics puzzles to the general public. A background in high school mathematics will be ample preparation for using this book, and it should appeal to anyone who enjoys puzzles and recreational mathematics. Features: Combines the arts and science, and emphasizes the fact that mathematics straddles both domains. Great resource for students preparing for mathematics competitions, and the trainers of such students.
This book presents an English translation of a classic Russian text on duality theory for Heyting algebras. Written by Georgian mathematician Leo Esakia, the text proved popular among Russian-speaking logicians. This translation helps make the ideas accessible to a wider audience and pays tribute to an influential mind in mathematical logic. The book discusses the theory of Heyting algebras and closure algebras, as well as the corresponding intuitionistic and modal logics. The author introduces the key notion of a hybrid that "crossbreeds" topology (Stone spaces) and order (Kripke frames), resulting in the structures now known as Esakia spaces. The main theorems include a duality between the categories of closure algebras and of hybrids, and a duality between the categories of Heyting algebras and of so-called strict hybrids. Esakia's book was originally published in 1985. It was the first of a planned two-volume monograph on Heyting algebras. But after the collapse of the Soviet Union, the publishing house closed and the project died with it. Fortunately, this important work now lives on in this accessible translation. The Appendix of the book discusses the planned contents of the lost second volume.
Provides an in-depth treatment of the Traveling Salesman problem--the archetypical problem in combinatorial optimization. Each chapter deals with a different aspect of the problem, and has been written by an acknowledged expert in the field. Focusses on the essential ideas in a self-contained manner. Includes exercises and an extensive bibliography.
Logicism, as put forward by Bertrand Russell, was predicated on a belief that all of mathematics can be deduced from a very small number of fundamental logical principles. In Logicism Renewed, the author revisits this concept in light of advances in mathematical logic and the need for languages that can be understood by both humans and computers that require distinguishing between the intension and extension of predicates. Using Intensional Type Theory (ITT) the author provides a unified foundation for mathematics and computer science, yielding a much simpler foundation for recursion theory and the semantics of computer programs than that currently provided by category theory.
Stig Kanger (1924-1988) made important contributions to logic and formal philosophy. Kanger's most original achievements were in the areas of general proof theory, the semantics of modal and deontic logic, and the logical analysis of the concept of rights. But he contributed significantly to action theory, preference logic and the theory of measurement as well. This is the second of two volumes dedicated to the work of Stig Kanger. The first volume is a complete collection of Kanger's philosophical papers. The present volume contains critical essays on the various aspects of Kanger's work as well as some biographical sketches. Lennart A...qvist, Jan Berg, Brian Chellas, Anatoli Degtyarev, Lars Gustafsson, SAren HalldA(c)n, Kaj BA, rge Hansen, Sven Ove Hansson, Risto Hilpinen, Jaakko Hintikka, Ghita HolmstrAm-Hintikka, Lars Lindahl, Sten LindstrAm, Ingmar PArn, Dag Prawitz, Wlodek Rabinowicz, Krister Segerberg, Amartya Sen, SAren Stenlund, GAran Sundholm, and Andrei Voronkov have contributed to this volume.
In fall 2000, the Notre Dame logic community hosted Greg Hjorth, Rodney G. Downey, Zoe Chatzidakis, and Paola D'Aquino as visiting lecturers. Each of them presented a month-long series of expository lectures at the graduate lecture. The articles in this volume are refinements of these excellent lectures. Hjorth's article provides an introduction to current work on Borel and equivalent classes using countable model theory as the motivating example. Chatzidakis's article is an introduction to the model theory of difference fields: a field with a distinguished automorphism. Results from the model theory of difference fields have been recently been used by Hrushovski and other model theorist to show various results in number theory. Downey's contribution provides an introduction to the recent work by him and many others on the relationship between randomness and computably enumerable reals. Paola D'Aquino studies weak models of Peano Arithmetic (in particular, models where induction is restricted to bounded formulas) focusing on number theoretic results.
This undergraduate textbook promotes an active transition to higher mathematics. Problem solving is the heart and soul of this book: each problem is carefully chosen to demonstrate, elucidate, or extend a concept. More than 300 exercises engage the reader in extensive arguments and creative approaches, while exploring connections between fundamental mathematical topics. Divided into four parts, this book begins with a playful exploration of the building blocks of mathematics, such as definitions, axioms, and proofs. A study of the fundamental concepts of logic, sets, and functions follows, before focus turns to methods of proof. Having covered the core of a transition course, the author goes on to present a selection of advanced topics that offer opportunities for extension or further study. Throughout, appendices touch on historical perspectives, current trends, and open questions, showing mathematics as a vibrant and dynamic human enterprise. This second edition has been reorganized to better reflect the layout and curriculum of standard transition courses. It also features recent developments and improved appendices. An Invitation to Abstract Mathematics is ideal for those seeking a challenging and engaging transition to advanced mathematics, and will appeal to both undergraduates majoring in mathematics, as well as non-math majors interested in exploring higher-level concepts. From reviews of the first edition: Bajnok's new book truly invites students to enjoy the beauty, power, and challenge of abstract mathematics. ... The book can be used as a text for traditional transition or structure courses ... but since Bajnok invites all students, not just mathematics majors, to enjoy the subject, he assumes very little background knowledge. Jill Dietz, MAA ReviewsThe style of writing is careful, but joyously enthusiastic.... The author's clear attitude is that mathematics consists of problem solving, and that writing a proof falls into this category. Students of mathematics are, therefore, engaged in problem solving, and should be given problems to solve, rather than problems to imitate. The author attributes this approach to his Hungarian background ... and encourages students to embrace the challenge in the same way an athlete engages in vigorous practice. John Perry, zbMATH
Introduces the GUHA method of mechanizing hypothesis formation as a data mining tool. Presents examples of data mining with enhanced association rules, histograms, contingency tables and action rules. Provides examples of data mining for exception rules and examples of subgroups discovery. Outlines possibilities of GUHA in business intelligence and big data. Overviews related theoretical results and challenges related to mechanizing hypothesis formation.
This book is dedicated to V.A. Yankov's seminal contributions to the theory of propositional logics. His papers, published in the 1960s, are highly cited even today. The Yankov characteristic formulas have become a very useful tool in propositional, modal and algebraic logic. The papers contributed to this book provide the new results on different generalizations and applications of characteristic formulas in propositional, modal and algebraic logics. In particular, an exposition of Yankov's results and their applications in algebraic logic, the theory of admissible rules and refutation systems is included in the book. In addition, the reader can find the studies on splitting and join-splitting in intermediate propositional logics that are based on Yankov-type formulas which are closely related to canonical formulas, and the study of properties of predicate extensions of non-classical propositional logics. The book also contains an exposition of Yankov's revolutionary approach to constructive proof theory. The editors also include Yankov's contributions to history and philosophy of mathematics and foundations of mathematics, as well as an examination of his original interpretation of history of Greek philosophy and mathematics.
A thorough introduction to Borel sets and measurable selections, acting as a stepping stone to descriptive set theory by presenting such important techniques as universal sets, prewellordering, scales, etc. It contains significant applications to other branches of mathematics and serves as a self-contained reference accessible by mathematicians in many different disciplines. Written in an easily understandable style, and using only naive set theory, general topology, analysis, and algebra, it is thus well suited for graduates exploring areas of mathematics for their research and for those requiring Borel sets and measurable selections in their work.
The book presents a thoroughly elaborated logical theory of generalized truth-values understood as subsets of some established set of (basic) truth values. After elucidating the importance of the very notion of a truth value in logic and philosophy, we examine some possible ways of generalizing this notion. The useful four-valued logic of first-degree entailment by Nuel Belnap and the notion of a bilattice (a lattice of truth values with two ordering relations) constitute the basis for further generalizations. By doing so we elaborate the idea of a multilattice, and most notably, a trilattice of truth values - a specific algebraic structure with information ordering and two distinct logical orderings, one for truth and another for falsity. Each logical order not only induces its own logical vocabulary, but determines also its own entailment relation. We consider both semantic and syntactic ways of formalizing these relations and construct various logical calculi.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the fifth publication in the Perspectives in Logic series, studies set-theoretic independence results (independence from the usual set-theoretic ZFC axioms), in particular for problems on the continuum. The author gives a complete presentation of the theory of proper forcing and its relatives, starting from the beginning and avoiding the metamathematical considerations. No prior knowledge of forcing is required. The book will enable a researcher interested in an independence result of the appropriate kind to have much of the work done for them, thereby allowing them to quote general results.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the twelfth publication in the Lecture Notes in Logic series, collects the proceedings of the European Summer Meeting of the Association of Symbolic Logic, held at the University of the Basque Country, San Sebastian in July 1996. The main topics were model theory, proof theory, recursion and complexity theory, models of arithmetic, logic for artificial intelligence, formal semantics of natural language, and philosophy of contemporary logic. The volume includes eleven papers from pre-eminent researchers in mathematical logic.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the second publication in the Lecture Notes in Logic series, is the proceedings of the Association for Symbolic Logic meeting held in Helsinki, Finland, in July 1990. It contains eighteen papers by leading researchers, covering all fields of mathematical logic from the philosophy of mathematics, through model theory, proof theory, recursion theory, and set theory, to the connections of logic to computer science. The articles published here are still widely cited and continue to provide ideas for ongoing research projects.
This book features a series of lectures that explores three different fields in which functor homology (short for homological algebra in functor categories) has recently played a significant role. For each of these applications, the functor viewpoint provides both essential insights and new methods for tackling difficult mathematical problems. In the lectures by Aurelien Djament, polynomial functors appear as coefficients in the homology of infinite families of classical groups, e.g. general linear groups or symplectic groups, and their stabilization. Djament's theorem states that this stable homology can be computed using only the homology with trivial coefficients and the manageable functor homology. The series includes an intriguing development of Scorichenko's unpublished results. The lectures by Wilberd van der Kallen lead to the solution of the general cohomological finite generation problem, extending Hilbert's fourteenth problem and its solution to the context of cohomology. The focus here is on the cohomology of algebraic groups, or rational cohomology, and the coefficients are Friedlander and Suslin's strict polynomial functors, a conceptual form of modules over the Schur algebra. Roman Mikhailov's lectures highlight topological invariants: homoto py and homology of topological spaces, through derived functors of polynomial functors. In this regard the functor framework makes better use of naturality, allowing it to reach calculations that remain beyond the grasp of classical algebraic topology. Lastly, Antoine Touze's introductory course on homological algebra makes the book accessible to graduate students new to the field. The links between functor homology and the three fields mentioned above offer compelling arguments for pushing the development of the functor viewpoint. The lectures in this book will provide readers with a feel for functors, and a valuable new perspective to apply to their favourite problems.
This book contains the courses given at the Fifth School on Complex Systems held at Santiago, Chile, from 9th .to 13th December 1996. At this school met researchers working on areas related with recent trends in Complex Systems, which include dynamical systems, cellular automata, symbolic dynamics, spatial systems, statistical physics and thermodynamics. Scientists working in these subjects come from several areas: pure and applied mathematics, physics, biology, computer science and electrical engineering. Each contribution is devoted to one of the above subjects. In most cases they are structured as surveys, presenting at the same time an original point of view about the topic and showing mostly new results. The paper of Bruno Durand presents the state of the art on the relationships between the notions of surjectivity, injectivity and reversibility in cellular automata when finite, infinite or periodic configurations are considered, also he discusses decidability problems related with the classification of cellular automata as well as global properties mentioned above. The paper of Eric Goles and Martin Matamala gives a uniform presentation of simulations of Turing machines by cellular automata. The main ingredient is the encoding function which must be fixed for all Turing machine. In this context known results are revised and new results are presented.
Fuzzy Sets in Decision Analysis, Operations Research and Statistics includes chapters on fuzzy preference modeling, multiple criteria analysis, ranking and sorting methods, group decision-making and fuzzy game theory. It also presents optimization techniques such as fuzzy linear and non-linear programming, applications to graph problems and fuzzy combinatorial methods such as fuzzy dynamic programming. In addition, the book also accounts for advances in fuzzy data analysis, fuzzy statistics, and applications to reliability analysis. These topics are covered within four parts: Decision Making, Mathematical Programming, Statistics and Data Analysis, and Reliability, Maintenance and Replacement. The scope and content of the book has resulted from multiple interactions between the editor of the volume, the series editors, the series advisory board, and experts in each chapter area. Each chapter was written by a well-known researcher on the topic and reviewed by other experts in the area. These expert reviewers sometimes became co-authors because of the extent of their contribution to the chapter. As a result, twenty-five authors from twelve countries and four continents were involved in the creation of the 13 chapters, which enhances the international character of the project and gives an idea of how carefully the Handbook has been developed.
Kurt Goedel (1906-1978) shook the mathematical world in 1931 by a result that has become an icon of 20th century science: The search for rigour in proving mathematical theorems had led to the formalization of mathematical proofs, to the extent that such proving could be reduced to the application of a few mechanical rules. Goedel showed that whenever the part of mathematics under formalization contains elementary arithmetic, there will be arithmetical statements that should be formally provable but aren't. The result is known as Goedel's first incompleteness theorem, so called because there is a second incompleteness result, embodied in his answer to the question "Can mathematics be proved consistent?" This book offers the first examination of Goedel's preserved notebooks from 1930, written in a long-forgotten German shorthand, that show his way to the results: his first ideas, how they evolved, and how the jewel-like final presentation in his famous publication On formally undecidable propositions was composed.The book also contains the original version of Goedel's incompleteness article, as handed in for publication with no mentioning of the second incompleteness theorem, as well as six contemporary lectures and seminars Goedel gave between 1931 and 1934 in Austria, Germany, and the United States. The lectures are masterpieces of accessible presentations of deep scientific results, readable even for those without special mathematical training, and published here for the first time.
The Bittinger Worktext Series changed the face of developmental education with the introduction of objective-based worktexts that presented math one concept at a time. This approach allowed students to understand the rationale behind each concept before practicing the associated skills and then moving on to the next topic. With this revision, Marv Bittinger continues to focus on building success through conceptual understanding, while also supporting students with quality applications, exercises, and new review and study materials to help them apply and retain their knowledge.
Optimization Theory Based on Neutrosophic and Plithogenic Sets presents the state-of-the-art research on neutrosophic and plithogenic theories and their applications in various optimization fields. Its table of contents covers new concepts, methods, algorithms, modelling, and applications of green supply chain, inventory control problems, assignment problems, transportation problem, nonlinear problems and new information related to optimization for the topic from the theoretical and applied viewpoints in neutrosophic sets and logic.
In this book we develop powerful techniques based on formal methods for the verification of correctness, consistency and safety properties related to dynamic reconfiguration and communication in complex distributed systems. In particular, static analysis techniques based on types and type systems are an adequate methodology considering their success in guaranteeing not only basic safety properties, but also more sophisticated ones like deadlock or lock freedom in concurrent settings.The main contributions of this book are twofold. i) We design a type system for a concurrent object-oriented calculus to statically ensure consistency of dynamic reconfigurations. ii) We define an encoding of the session pi-calculus, which models communication in distributed systems, into the standard typed pi-calculus. We use this encoding to derive properties like type safety and progress in the session pi-calculus by exploiting the corresponding properties in the standard typed pi-calculus.
MATRIX is Australia's international, residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each lasting 1-4 weeks. This book is a scientific record of the five programs held at MATRIX in its first year, 2016: - Higher Structures in Geometry and Physics - Winter of Disconnectedness - Approximation and Optimisation - Refining C*-Algebraic Invariants for Dynamics using KK-theory - Interactions between Topological Recursion, Modularity, Quantum Invariants and Low- dimensional Topology The MATRIX Scientific Committee selected these programs based on their scientific excellence and the participation rate of high-profile international participants. Each program included ample unstructured time to encourage collaborative research; some of the longer programs also included an embedded conference or lecture series. The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on selected topics related to the MATRIX program; the remaining contributions are predominantly lecture notes based on talks or activities at MATRIX.
This book demonstrates how to formally model various mathematical domains (including algorithms operating in these domains) in a way that makes them amenable to a fully automatic analysis by computer software.The presented domains are typically investigated in discrete mathematics, logic, algebra, and computer science; they are modeled in a formal language based on first-order logic which is sufficiently rich to express the core entities in whose correctness we are interested: mathematical theorems and algorithmic specifications. This formal language is the language of RISCAL, a “mathematical model checker” by which the validity of all formulas and the correctness of all algorithms can be automatically decided. The RISCAL software is freely available; all formal contents presented in the book are given in the form of specification files by which the reader may interact with the software while studying the corresponding book material. |
You may like...
Creativity in Computing and DataFlow…
Suyel Namasudra, Veljko Milutinovic
Hardcover
R4,204
Discovery Miles 42 040
War and Peace in the Global Village
Marshall McLuhan, Quentin Fiore
Paperback
Statistical Analysis of Networks
Konstantin Avrachenkov, Maximilien Dreveton
Hardcover
R3,164
Discovery Miles 31 640
|