![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations
This textbook provides an accessible and concise introduction to numerical analysis for upper undergraduate and beginning graduate students from various backgrounds. It was developed from the lecture notes of four successful courses on numerical analysis taught within the MPhil of Scientific Computing at the University of Cambridge. The book is easily accessible, even to those with limited knowledge of mathematics. Students will get a concise, but thorough introduction to numerical analysis. In addition the algorithmic principles are emphasized to encourage a deeper understanding of why an algorithm is suitable, and sometimes unsuitable, for a particular problem. A Concise Introduction to Numerical Analysis strikes a balance between being mathematically comprehensive, but not overwhelming with mathematical detail. In some places where further detail was felt to be out of scope of the book, the reader is referred to further reading. The book uses MATLAB (R) implementations to demonstrate the workings of the method and thus MATLAB's own implementations are avoided, unless they are used as building blocks of an algorithm. In some cases the listings are printed in the book, but all are available online on the book's page at www.crcpress.com. Most implementations are in the form of functions returning the outcome of the algorithm. Also, examples for the use of the functions are given. Exercises are included in line with the text where appropriate, and each chapter ends with a selection of revision exercises. Solutions to odd-numbered exercises are also provided on the book's page at www.crcpress.com. This textbook is also an ideal resource for graduate students coming from other subjects who will use numerical techniques extensively in their graduate studies.
Information security has a major gap when cryptography is implemented. Cryptographic algorithms are well defined, key management schemes are well known, but the actual deployment is typically overlooked, ignored, or unknown. Cryptography is everywhere. Application and network architectures are typically well-documented but the cryptographic architecture is missing. This book provides a guide to discovering, documenting, and validating cryptographic architectures. Each chapter builds on the next to present information in a sequential process. This approach not only presents the material in a structured manner, it also serves as an ongoing reference guide for future use.
This book introduces ten problem-solving strategies by first presenting the strategy and then applying it to problems in elementary mathematics. In doing so, first the common approach is shown, and then a more elegant strategy is provided. Elementary mathematics is used so that the reader can focus on the strategy and not be distracted by some more sophisticated mathematics.
Architecture of Mathematics describes the logical structure of Mathematics from its foundations to its real-world applications. It describes the many interweaving relationships between different areas of mathematics and its practical applications, and as such provides unique reading for professional mathematicians and nonmathematicians alike. This book can be a very important resource both for the teaching of mathematics and as a means to outline the research links between different subjects within and beyond the subject. Features All notions and properties are introduced logically and sequentially, to help the reader gradually build understanding. Focusses on illustrative examples that explain the meaning of mathematical objects and their properties. Suitable as a supplementary resource for teaching undergraduate mathematics, and as an aid to interdisciplinary research. Forming the reader's understanding of Mathematics as a unified science, the book helps to increase his general mathematical culture.
The book is intended as an invitation to the topic of relations on a rather general basis. It fills the gap between the basic knowledge offered in countless introductory papers and books (usually comprising orders and equivalences) and the highly specialized monographs on mainly relation algebras, many-valued (fuzzy) relations, or graphs. This is done not only by presenting theoretical results but also by giving hints to some of the many interesting application areas (also including their respective theoretical basics).This book is a new - and the first of its kind - compilation of known results on binary relations. It offers relational concepts in both reasonable depth and broadness, and also provides insight into the vast diversity of theoretical results as well as application possibilities beyond the commonly known examples.This book is unique by the spectrum of the topics it handles. As indicated in its title these are:
Merging logic and mathematics in deductive inference—an innovative, cutting-edge approach. Optimization methods for logical inference? Absolutely, say Vijay Chandru and John Hooker, two major contributors to this rapidly expanding field. And even though "solving logical inference problems with optimization methods may seem a bit like eating sauerkraut with chopsticks. . . it is the mathematical structure of a problem that determines whether an optimization model can help solve it, not the context in which the problem occurs." Presenting powerful, proven optimization techniques for logic inference problems, Chandru and Hooker show how optimization models can be used not only to solve problems in artificial intelligence and mathematical programming, but also have tremendous application in complex systems in general. They survey most of the recent research from the past decade in logic/optimization interfaces, incorporate some of their own results, and emphasize the types of logic most receptive to optimization methods—propositional logic, first order predicate logic, probabilistic and related logics, logics that combine evidence such as Dempster-Shafer theory, rule systems with confidence factors, and constraint logic programming systems. Requiring no background in logic and clearly explaining all topics from the ground up, Optimization Methods for Logical Inference is an invaluable guide for scientists and students in diverse fields, including operations research, computer science, artificial intelligence, decision support systems, and engineering.
This volume covers a wide range of topics in the most recent debates in the philosophy of mathematics, and is dedicated to how semantic, epistemological, ontological and logical issues interact in the attempt to give a satisfactory picture of mathematical knowledge. The essays collected here explore the semantic and epistemic problems raised by different kinds of mathematical objects, by their characterization in terms of axiomatic theories, and by the objectivity of both pure and applied mathematics. They investigate controversial aspects of contemporary theories such as neo-logicist abstractionism, structuralism, or multiversism about sets, by discussing different conceptions of mathematical realism and rival relativistic views on the mathematical universe. They consider fundamental philosophical notions such as set, cardinal number, truth, ground, finiteness and infinity, examining how their informal conceptions can best be captured in formal theories. The philosophy of mathematics is an extremely lively field of inquiry, with extensive reaches in disciplines such as logic and philosophy of logic, semantics, ontology, epistemology, cognitive sciences, as well as history and philosophy of mathematics and science. By bringing together well-known scholars and younger researchers, the essays in this collection - prompted by the meetings of the Italian Network for the Philosophy of Mathematics (FilMat) - show how much valuable research is currently being pursued in this area, and how many roads ahead are still open for promising solutions to long-standing philosophical concerns. Promoted by the Italian Network for the Philosophy of Mathematics - FilMat
This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FssDE?FN?GssE?DF?GN and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Gratzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.
This new book deals with the construction of finite-difference (FD) algorithms for three main types of equations: elliptic equations, heat equations, and gas dynamic equations in Lagrangian form. These methods can be applied to domains of arbitrary shapes. The construction of FD algorithms for all types of equations is done on the basis of the support-operators method (SOM). This method constructs the FD analogs of main invariant differential operators of first order such as the divergence, the gradient, and the curl. This book is unique because it is the first book not in Russian to present the support-operators ideas. Conservative Finite-Difference Methods on General Grids is completely self-contained, presenting all the background material necessary for understanding. The book provides the tools needed by scientists and engineers to solve a wide range of practical engineering problems. An abundance of tables and graphs support and explain methods. The book details all algorithms needed for implementation. A 3.5" IBM compatible computer diskette with the main algorithms in FORTRAN accompanies text for easy use.
In Mathematical Foundations of Public Key Cryptography, the authors integrate the results of more than 20 years of research and teaching experience to help students bridge the gap between math theory and crypto practice. The book provides a theoretical structure of fundamental number theory and algebra knowledge supporting public-key cryptography. Rather than simply combining number theory and modern algebra, this textbook features the interdisciplinary characteristics of cryptography-revealing the integrations of mathematical theories and public-key cryptographic applications. Incorporating the complexity theory of algorithms throughout, it introduces the basic number theoretic and algebraic algorithms and their complexities to provide a preliminary understanding of the applications of mathematical theories in cryptographic algorithms. Supplying a seamless integration of cryptography and mathematics, the book includes coverage of elementary number theory; algebraic structure and attributes of group, ring, and field; cryptography-related computing complexity and basic algorithms, as well as lattice and fundamental methods of lattice cryptanalysis. The text consists of 11 chapters. Basic theory and tools of elementary number theory, such as congruences, primitive roots, residue classes, and continued fractions, are covered in Chapters 1-6. The basic concepts of abstract algebra are introduced in Chapters 7-9, where three basic algebraic structures of groups, rings, and fields and their properties are explained. Chapter 10 is about computational complexities of several related mathematical algorithms, and hard problems such as integer factorization and discrete logarithm. Chapter 11 presents the basics of lattice theory and the lattice basis reduction algorithm-the LLL algorithm and its application in the cryptanalysis of the RSA algorithm. Containing a number of exercises on key algorithms, the book is suitable for use as a textbook for undergraduate students and first-year graduate students in information security programs. It is also an ideal reference book for cryptography professionals looking to master public-key cryptography.
Statistical Methods in Computer Security summarizes discussions held at the recent Joint Statistical Meeting to provide a clear layout of current applications in the field. This blue-ribbon reference discusses the most influential advancements in computer security policy, firewalls, and security issues related to passwords. It addresses crime and misconduct on the Internet, considers the development of infrastructures that may prevent breaches of security and law, and illustrates the vulnerability of networked computers to new virus attacks despite widespread deployment of antivirus software, firewalls, and other network security equipment.
Introduction to Recognition and Deciphering of Patterns is meant to acquaint STEM and non-STEM students with different patterns, as well as to where and when specific patterns arise. In addition, the book teaches students how to recognize patterns and distinguish the similarities and differences between them. Patterns, such as weather patterns, traffic patterns, behavioral patterns, geometric patterns, linguistic patterns, structural patterns, digital patterns, and the like, emerge on an everyday basis, . Recognizing patterns and studying their unique traits are essential for the development and enhancement of our intuitive skills and for strengthening our analytical skills. Mathematicians often apply patterns to get acquainted with new concepts--a technique that can be applied across many disciplines. Throughout this book we explore assorted patterns that emerge from various geometrical configurations of squares, circles, right triangles, and equilateral triangles that either repeat at the same scale or at different scales. The book also analytically examines linear patterns, geometric patterns, alternating patterns, piecewise patterns, summation-type patterns and factorial-type patterns. Deciphering the details of these distinct patterns leads to the proof by induction method, and the book will also render properties of Pascal's triangle and provide supplemental practice in deciphering specific patterns and verifying them. This book concludes with first-order recursive relations: describing sequences as recursive relations, obtaining the general solution by solving an initial value problem, and determining the periodic traits. Features * Readily accessible to a broad audience, including those with limited mathematical background * Especially useful for students in non-STEM disciplines, such as psychology, sociology, economics and business, as well as for liberal arts disciplines and art students.
These proceedings comprise two workshops celebrating the accomplishments of David J. Benson on the occasion of his sixtieth birthday. The papers presented at the meetings were representative of the many mathematical subjects he has worked on, with an emphasis on group prepresentations and cohomology. The first workshop was titled "Groups, Representations, and Cohomology" and held from June 22 to June 27, 2015 at Sabhal Mor Ostaig on the Isle of Skye, Scotland. The second was a combination of a summer school and workshop on the subject of "Geometric Methods in the Representation Theory of Finite Groups" and took place at the Pacific Institute for the Mathematical Sciences at the University of British Columbia in Vancouver from July 27 to August 5, 2016. The contents of the volume include a composite of both summer school material and workshop-derived survey articles on geometric and topological aspects of the representation theory of finite groups. The mission of the annually sponsored Summer Schools is to train and draw new students, and help Ph.D students transition to independent research.
The aim of this book is to introduce a range of combinatorial methods for those who want to apply these methods in the solution of practical and theoretical problems. Various tricks and techniques are taught by means of exercises. Hints are given in a separate section and a third section contains all solutions in detail. A dictionary section gives definitions of the combinatorial notions occurring in the book. "Combinatorial Problems and Exercises" was first published in 1979. This revised edition has the same basic structure but has been brought up to date with a series of exercises on random walks on graphs and their relations to eigenvalues, expansion properties and electrical resistance. In various chapters the author found lines of thought that have been extended in a natural and significant way in recent years. About 60 new exercises (more counting sub-problems) have been added and several solutions have been simplified.
The Curry-Howard isomorphism states an amazing correspondence
between systems of formal logic as encountered in proof theory and
computational calculi as found in type theory. For instance,
This book on proof theory centers around the legacy of Kurt Schutte and its current impact on the subject. Schutte was the last doctoral student of David Hilbert who was the first to see that proofs can be viewed as structured mathematical objects amenable to investigation by mathematical methods (metamathematics). Schutte inaugurated the important paradigm shift from finite proofs to infinite proofs and developed the mathematical tools for their analysis. Infinitary proof theory flourished in his hands in the 1960s, culminating in the famous bound 0 for the limit of predicative mathematics (a fame shared with Feferman). Later his interests shifted to developing infinite proof calculi for impredicative theories. Schutte had a keen interest in advancing ordinal analysis to ever stronger theories and was still working on some of the strongest systems in his eighties. The articles in this volume from leading experts close to his research, show the enduring influence of his work in modern proof theory. They range from eye witness accounts of his scientific life to developments at the current research frontier, including papers by Schutte himself that have never been published before.
As the famous Pythagorean statement reads, 'Number rules the universe', and its veracity is proven in the many mathematical discoveries that have accelerated the development of science, engineering, and even philosophy. A so called "art of the mind", mathematics has guided and stimulated many aspects of human innovation down through the centuries. In this book, Marcel Danesi presents a historical overview of the ten greatest achievements in mathematics, and dynamically explores their importance and effects on our daily lives. Considered as a chain of events rather than isolated incidents, Danesi takes us from the beginnings of modern day mathematics with Pythagoras, through the concept of zero, right the way up to modern computational algorithms. Loaded with thought-provoking practical exercises and puzzles, Pythagoras' Legacy allows the reader to apply their knowledge and discover the significance of mathematics in their everyday lives.
Ernst Zermelo (1871-1953) is regarded as the founder of axiomatic set theory and best-known for the first formulation of the axiom of choice. However, his papers include also pioneering work in applied mathematics and mathematical physics. This edition of his collected papers will consist of two volumes. Besides providing a biography, the present Volume I covers set theory, the foundations of mathematics, and pure mathematics and is supplemented by selected items from his Nachlass and part of his translations of Homer's Odyssey. Volume II will contain his work in the calculus of variations, applied mathematics, and physics. The papers are each presented in their original language together with an English translation, the versions facing each other on opposite pages. Each paper or coherent group of papers is preceded by an introductory note provided by an acknowledged expert in the field which comments on the historical background, motivations, accomplishments, and influence.
This book provides an introduction to some key subjects in algebra and topology. It consists of comprehensive texts of some hours courses on the preliminaries for several advanced theories in (categorical) algebra and topology. Often, this kind of presentations is not so easy to find in the literature, where one begins articles by assuming a lot of knowledge in the field. This volume can both help young researchers to quickly get into the subject by offering a kind of " roadmap " and also help master students to be aware of the basics of other research directions in these fields before deciding to specialize in one of them. Furthermore, it can be used by established researchers who need a particular result for their own research and do not want to go through several research papers in order to understand a single proof. Although the chapters can be read as " self-contained " chapters, the authors have tried to coordinate the texts in order to make them complementary. The seven chapters of this volume correspond to the seven courses taught in two Summer Schools that took place in Louvain-la-Neuve in the frame of the project Fonds d'Appui a l'Internationalisation of the Universite catholique de Louvain to strengthen the collaborations with the universities of Coimbra, Padova and Poitiers, within the Coimbra Group.
This is an introduction to, and survey of, the constructive approaches to pure mathematics. The authors emphasise the viewpoint of Errett Bishop's school, but intuitionism. Russian constructivism and recursive analysis are also treated, with comparisons between the various approaches included where appropriate. Constructive mathematics is now enjoying a revival, with interest from not only logicans but also category theorists, recursive function theorists and theoretical computer scientists. This account for non-specialists in these and other disciplines.
This textbook presents the basics of philosophy that are necessary for the student and researcher in science in order to better understand scientific work. The approach is not historical but formative: tools for semantical analysis, ontology of science, epistemology, and scientific ethics are presented in a formal and direct way. The book has two parts: one with the general theory and a second part with application to some problems such as the interpretation of quantum mechanics, the nature of mathematics, and the ontology of spacetime. The book addresses questions such as "What is meaning?", "What is truth?", "What are truth criteria in science?", "What is a theory?", "What is a model?" "What is a datum?", "What is information?", "What does it mean to understand something?", "What is space?", "What is time?", "How are these concepts articulated in science?" "What are values?" "What are the limits of science?", and many more. The philosophical views presented are "scientific" in the sense that they are informed by current science, they are relevant for scientific research, and the method adopted uses the hypothetical-deductive approach that is characteristic of science. The results and conclusions, as any scientific conclusion, are open to revision in the light of future advances. Hence, this philosophical approach opposes to dogmatic philosophy. Supported by end-of-chapter summaries and a list of special symbols used, the material will be of interest for students and researchers in both science and philosophy. The second part will appeal to physicists and mathematicians.
Over the last few decades the interest of logicians and mathematicians in constructive and computational aspects of their subjects has been steadily growing, and researchers from disparate areas realized that they can benefit enormously from the mutual exchange of techniques concerned with those aspects. A key figure in this exciting development is the logician and mathematician Helmut Schwichtenberg to whom this volume is dedicated on the occasion of his 70th birthday and his turning emeritus. The volume contains 20 articles from leading experts about recent developments in Constructive set theory, Provably recursive functions, Program extraction, Theories of truth, Constructive mathematics, Classical vs. intuitionistic logic, Inductive definitions, and Continuous functionals and domains.
This book brings together contributions by leading researchers in computational complexity theory written in honor of Somenath Biswas on the occasion of his sixtieth birthday. They discuss current trends and exciting developments in this flourishing area of research and offer fresh perspectives on various aspects of complexity theory. The topics covered include arithmetic circuit complexity, lower bounds and polynomial identity testing, the isomorphism conjecture, space-bounded computation, graph isomorphism, resolution and proof complexity, entropy and randomness. Several chapters have a tutorial flavor. The aim is to make recent research in these topics accessible to graduate students and senior undergraduates in computer science and mathematics. It can also be useful as a resource for teaching advanced level courses in computational complexity.
The surreal numbers form a system which includes both the ordinary real numbers and the ordinals. Since their introduction by J. H. Conway, the theory of surreal numbers has seen a rapid development revealing many natural and exciting properties. These notes provide a formal introduction to the theory in a clear and lucid style. The the author is able to lead the reader through to some of the problems in the field. The topics covered include exponentiation and generalized e-numbers. |
You may like...
CMOS Analog IC Design for 5G and Beyond
Sangeeta Singh, Rajeev Arya, …
Hardcover
R4,691
Discovery Miles 46 910
Green Mobile Cloud Computing
Debashis De, Anwesha Mukherjee, …
Hardcover
R4,275
Discovery Miles 42 750
Sustainable Urban Development Volume 2…
Mark Deakin, Gordon Mitchell, …
Hardcover
R5,528
Discovery Miles 55 280
Organic Cinema - Film, Architecture, and…
Thorsten Botz-Bornstein
Hardcover
R2,839
Discovery Miles 28 390
|