![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations
There are thousands of books relating to poker, blackjack, roulette and baccarat, including strategy guides, statistical analysis, psychological studies, and much more. However, there are no books on Pell, Rouleno, Street Dice, and many other games that have had a short life in casinos! While this is understandable - most casino gamblers have not heard of these games, and no one is currently playing them - their absence from published works means that some interesting mathematics and gaming history are at risk of being lost forever. Table games other than baccarat, blackjack, craps, and roulette are called carnival games, as a nod to their origin in actual traveling or seasonal carnivals. Mathematics of Casino Carnival Games is a focused look at these games and the mathematics at their foundation. Features * Exercises, with solutions, are included for readers who wish to practice the ideas presented * Suitable for a general audience with an interest in the mathematics of gambling and games * Goes beyond providing practical 'tips' for gamblers, and explores the mathematical principles that underpin gambling games
This book provides an integrated treatment of the theory of nonnegative matrices and some related classes of positive matrices, concentrating on connections with game theory, combinatorics, inequalities, optimization and mathematical economics. The authors have chosen the wide variety of applications, which include price fixing, scheduling, and the fair division problem, both for their elegant mathematical content and for their accessibility to students with minimal preparation. They present many new results in matrix theory for the first time in book form, while they present more standard topics in a novel fashion. The treatment is rigorous and almost all results are proved completely. These new results and applications will be of great interest to researchers in linear programming, statistics, and operations research. The minimal prerequisites also make the book accessible to first year graduate students.
This is the first book to introduce Green-function-based multiscale theory and the corresponding finite element method, which are readily applicable to composites and random media. The methodology is considered to be the one that most effectively tackles the uncertainty of stress propagation in complex heterogeneities of random media, and which presents multiscale theory from distinctive scale separation and scale-coupling viewpoints. Deliberately taking a multiscale perspective, it covers scale separation and then scale coupling. Both micromechanics and novel scale-coupling mechanics are described in relation to variational principles and bounds, as well as in the emerging topics on percolation and scale-coupling computation. It gives detail on the different bounds encountered, covering classical second and third order, new fourth order, and innovative ellipsoidal variations. Green-function-based multiscale theory is addressed to applications in solid mechanics and transport of complex media ranging from micro- and nano-composites, polycrystals, soils, rocks, cementitious materials, to biological materials. It is useful as a graduate textbook in civil and mechanical engineering and as a reference.
"Conflict, Complexity and Mathematical Social Science" provides a foundational mathematical approach to the modelling of social conflict. The book illustrates how theory and evidence can be mathematically deepened and how investigations grounded in social choice theory can provide the evidence needed to inform social practice. Countering criticism from constructivist viewpoints it shows how discourse is grounded in mathematical logic and mathematical structure. The modelling of social conflict is viewed as an application of mathematical social science and relevant models are drawn from each field of mathematical psychology, mathematical sociology, mathematical political science and mathematical economics. Unique in its multidisciplinary focus the book brings together powerful mathematical conceptualisations of the social world from a wide range of separate areas of inquiry, thereby providing a strong conceptual framework and an integrated account of social situations. It is a vital resource for all researchers in peace science, peace and conflict studies, politics, international relations, mathematical modelling in the social sciences and complexity theory.
Architecture of Mathematics describes the logical structure of Mathematics from its foundations to its real-world applications. It describes the many interweaving relationships between different areas of mathematics and its practical applications, and as such provides unique reading for professional mathematicians and nonmathematicians alike. This book can be a very important resource both for the teaching of mathematics and as a means to outline the research links between different subjects within and beyond the subject. Features All notions and properties are introduced logically and sequentially, to help the reader gradually build understanding. Focusses on illustrative examples that explain the meaning of mathematical objects and their properties. Suitable as a supplementary resource for teaching undergraduate mathematics, and as an aid to interdisciplinary research. Forming the reader's understanding of Mathematics as a unified science, the book helps to increase his general mathematical culture.
Fuzzy Modelling: Paradigms and Practice provides an up-to-date and authoritative compendium of fuzzy models, identification algorithms and applications. Chapters in this book have been written by the leading scholars and researchers in their respective subject areas. Several of these chapters include both theoretical material and applications. The editor of this volume has organized and edited the chapters into a coherent and uniform framework. The objective of this book is to provide researchers and practitioners involved in the development of models for complex systems with an understanding of fuzzy modelling, and an appreciation of what makes these models unique. The chapters are organized into three major parts covering relational models, fuzzy neural networks and rule-based models. The material on relational models includes theory along with a large number of implemented case studies, including some on speech recognition, prediction, and ecological systems. The part on fuzzy neural networks covers some fundamentals, such as neurocomputing, fuzzy neurocomputing, etc., identifies the nature of the relationship that exists between fuzzy systems and neural networks, and includes extensive coverage of their architectures. The last part addresses the main design principles governing the development of rule-based models. Fuzzy Modelling: Paradigms and Practice provides a wealth of specific fuzzy modelling paradigms, algorithms and tools used in systems modelling. Also included is a panoply of case studies from various computer, engineering and science disciplines. This should be a primary reference work for researchers and practitioners developing models of complex systems.
The Asian Logic Conference (ALC) is a major international event in mathematical logic. It features the latest scientific developments in the fields of mathematical logic and its applications, logic in computer science, and philosophical logic. The ALC series also aims to promote mathematical logic in the Asia-Pacific region and to bring logicians together both from within Asia and elsewhere for an exchange of information and ideas. This combined proceedings volume represents works presented or arising from the 14th and 15th ALCs.
Introduction to Recognition and Deciphering of Patterns is meant to acquaint STEM and non-STEM students with different patterns, as well as to where and when specific patterns arise. In addition, the book teaches students how to recognize patterns and distinguish the similarities and differences between them. Patterns, such as weather patterns, traffic patterns, behavioral patterns, geometric patterns, linguistic patterns, structural patterns, digital patterns, and the like, emerge on an everyday basis, . Recognizing patterns and studying their unique traits are essential for the development and enhancement of our intuitive skills and for strengthening our analytical skills. Mathematicians often apply patterns to get acquainted with new concepts--a technique that can be applied across many disciplines. Throughout this book we explore assorted patterns that emerge from various geometrical configurations of squares, circles, right triangles, and equilateral triangles that either repeat at the same scale or at different scales. The book also analytically examines linear patterns, geometric patterns, alternating patterns, piecewise patterns, summation-type patterns and factorial-type patterns. Deciphering the details of these distinct patterns leads to the proof by induction method, and the book will also render properties of Pascal's triangle and provide supplemental practice in deciphering specific patterns and verifying them. This book concludes with first-order recursive relations: describing sequences as recursive relations, obtaining the general solution by solving an initial value problem, and determining the periodic traits. Features * Readily accessible to a broad audience, including those with limited mathematical background * Especially useful for students in non-STEM disciplines, such as psychology, sociology, economics and business, as well as for liberal arts disciplines and art students.
Introduction to Recognition and Deciphering of Patterns is meant to acquaint STEM and non-STEM students with different patterns, as well as to where and when specific patterns arise. In addition, the book teaches students how to recognize patterns and distinguish the similarities and differences between them. Patterns, such as weather patterns, traffic patterns, behavioral patterns, geometric patterns, linguistic patterns, structural patterns, digital patterns, and the like, emerge on an everyday basis, . Recognizing patterns and studying their unique traits are essential for the development and enhancement of our intuitive skills and for strengthening our analytical skills. Mathematicians often apply patterns to get acquainted with new concepts--a technique that can be applied across many disciplines. Throughout this book we explore assorted patterns that emerge from various geometrical configurations of squares, circles, right triangles, and equilateral triangles that either repeat at the same scale or at different scales. The book also analytically examines linear patterns, geometric patterns, alternating patterns, piecewise patterns, summation-type patterns and factorial-type patterns. Deciphering the details of these distinct patterns leads to the proof by induction method, and the book will also render properties of Pascal's triangle and provide supplemental practice in deciphering specific patterns and verifying them. This book concludes with first-order recursive relations: describing sequences as recursive relations, obtaining the general solution by solving an initial value problem, and determining the periodic traits. Features * Readily accessible to a broad audience, including those with limited mathematical background * Especially useful for students in non-STEM disciplines, such as psychology, sociology, economics and business, as well as for liberal arts disciplines and art students.
At the turn of the century, Gottlob Frege and Edmund Husserl both participated in the discussion concerning the foundations of logic and mathematics. Since the 1960s, comparisons have been made between Frege's semantic views and Husserl's theory of intentional acts. In quite recent years, new approaches to the two philosophers' views have appeared. This collection of articles opens with the first English translation of Dagfinn Follesdal's early classic on Husserl and Frege of 1958. The book brings together a number of new contributions by well-known authors and gives a survey of recent developments in the field. It shows that Husserl's thought is coming to occupy a central role in the philosophy of logic and mathematics, as well as in the philosophy of mind and cognitive science. The work is primarily meant for philosophers, especially for those working on the problems of language, logic, mathematics, and mind. It can also be used as a textbook in advanced courses in philosophy. "
In Mathematical Foundations of Public Key Cryptography, the authors integrate the results of more than 20 years of research and teaching experience to help students bridge the gap between math theory and crypto practice. The book provides a theoretical structure of fundamental number theory and algebra knowledge supporting public-key cryptography. Rather than simply combining number theory and modern algebra, this textbook features the interdisciplinary characteristics of cryptography-revealing the integrations of mathematical theories and public-key cryptographic applications. Incorporating the complexity theory of algorithms throughout, it introduces the basic number theoretic and algebraic algorithms and their complexities to provide a preliminary understanding of the applications of mathematical theories in cryptographic algorithms. Supplying a seamless integration of cryptography and mathematics, the book includes coverage of elementary number theory; algebraic structure and attributes of group, ring, and field; cryptography-related computing complexity and basic algorithms, as well as lattice and fundamental methods of lattice cryptanalysis. The text consists of 11 chapters. Basic theory and tools of elementary number theory, such as congruences, primitive roots, residue classes, and continued fractions, are covered in Chapters 1-6. The basic concepts of abstract algebra are introduced in Chapters 7-9, where three basic algebraic structures of groups, rings, and fields and their properties are explained. Chapter 10 is about computational complexities of several related mathematical algorithms, and hard problems such as integer factorization and discrete logarithm. Chapter 11 presents the basics of lattice theory and the lattice basis reduction algorithm-the LLL algorithm and its application in the cryptanalysis of the RSA algorithm. Containing a number of exercises on key algorithms, the book is suitable for use as a textbook for undergraduate students and first-year graduate students in information security programs. It is also an ideal reference book for cryptography professionals looking to master public-key cryptography.
This new book deals with the construction of finite-difference (FD) algorithms for three main types of equations: elliptic equations, heat equations, and gas dynamic equations in Lagrangian form. These methods can be applied to domains of arbitrary shapes. The construction of FD algorithms for all types of equations is done on the basis of the support-operators method (SOM). This method constructs the FD analogs of main invariant differential operators of first order such as the divergence, the gradient, and the curl. This book is unique because it is the first book not in Russian to present the support-operators ideas. Conservative Finite-Difference Methods on General Grids is completely self-contained, presenting all the background material necessary for understanding. The book provides the tools needed by scientists and engineers to solve a wide range of practical engineering problems. An abundance of tables and graphs support and explain methods. The book details all algorithms needed for implementation. A 3.5" IBM compatible computer diskette with the main algorithms in FORTRAN accompanies text for easy use.
Statistical Methods in Computer Security summarizes discussions held at the recent Joint Statistical Meeting to provide a clear layout of current applications in the field. This blue-ribbon reference discusses the most influential advancements in computer security policy, firewalls, and security issues related to passwords. It addresses crime and misconduct on the Internet, considers the development of infrastructures that may prevent breaches of security and law, and illustrates the vulnerability of networked computers to new virus attacks despite widespread deployment of antivirus software, firewalls, and other network security equipment.
Series Editor's Preface. Preface. A. Kaleidoscopic Excursion into numerical Calculations of Differential Equations; E. van Groesen. An Introduction to the Finite Element Method; J. van Kan. Coupling of Sound and Structural Vibrations; C. Kauffmann. Mathematical Modeling and Dimensional Analysis; J. Molenaar. About Difference Equations, Algebras and Discrete Events; G.J. Olsder. Acoustical Detection of Obstructions in a Pipe with a Temperature Gradient; S.W. Rienstra. Interior Point Approach to linear Programming: Theory, Algorithms and Parametric Analysis; C. Roos. Some Reflections on Newton's Method; F. Twilt. Recurrence and Induction in Computer Science; A.J. van Zanten.
This unique textbook, in contrast to a standard logic text, provides the reader with a logic that actually can be used in practice to express and reason about mathematical ideas.The book is an introduction to simple type theory, a classical higher-order version of predicate logic that extends first-order logic. It presents a practice-oriented logic called Alonzo that is based on Alonzo Church's formulation of simple type theory known as Church's type theory. Unlike traditional predicate logics, Alonzo admits undefined expressions. The book illustrates, using Alonzo, how simple type theory is suited ideally for reasoning about mathematical structures and constructing libraries of mathematical knowledge. Topics and features: Offers the first book-length introduction to simple type theory as a predicate logic Provides the reader with a logic that is close to mathematical practice Presents the tools needed to build libraries of mathematical knowledge Employs two semantics, one for mathematics and one for logic Emphasizes the model-theoretic view of predicate logic Includes several important topics, such as definite description and theory morphisms, not usually found in standard logic textbooks Aimed at students of computing and mathematics at the graduate or upper-undergraduate level, this book is also well-suited for mathematicians, computing professionals, engineers, and scientists who need a practical logic for expressing and reasoning about mathematical ideas. William M. Farmer is a Professor in the Department of Computing and Software at McMaster University in Hamilton, Ontario, Canada.
Take the mystery out of basic math with the latest edition of BarCharts best-selling Math Review QuickStudy(r) guide. With updated content and an additional panel of information, Math Review includes hard-to-remember formulas and properties, along with numerous examples and illustrations to improve understanding. This comprehensive math guide will assist you way beyond your high school and college years. "
Originally published in 1973. This book presents a valid mode of reasoning that is different to mathematical probability. This inductive logic is investigated in terms of scientific investigation. The author presents his criteria of adequacy for analysing inductive support for hypotheses and discusses each of these criteria in depth. The chapters cover philosophical problems and paradoxes about experimental support, probability and justifiability, ending with a system of logical syntax of induction. Each section begins with a summary of its contents and there is a glossary of technical terms to aid the reader.
Originally published in 1965. This is a textbook of modern deductive logic, designed for beginners but leading further into the heart of the subject than most other books of the kind. The fields covered are the Propositional Calculus, the more elementary parts of the Predicate Calculus, and Syllogistic Logic treated from a modern point of view. In each of the systems discussed the main emphases are on Decision Procedures and Axiomatisation, and the material is presented with as much formal rigour as is compatible with clarity of exposition. The techniques used are not only described but given a theoretical justification. Proofs of Consistency, Completeness and Independence are set out in detail. The fundamental characteristics of the various systems studies, and their relations to each other are established by meta-logical proofs, which are used freely in all sections of the book. Exercises are appended to most of the chapters, and answers are provided.
Together with its compagnion volume this book presents a practical introduction to computing spline functions, the fundamental tools for fitting curves and surfaces in computer-aided design (CAD) and computer graphics.
Intuitionistic logic is presented here as part of familiar classical logic which allows mechanical extraction of programs from proofs. to make the material more accessible, basic techniques are presented first for propositional logic; Part II contains extensions to predicate logic. This material provides an introduction and a safe background for reading research literature in logic and computer science as well as advanced monographs. Readers are assumed to be familiar with basic notions of first order logic. One device for making this book short was inventing new proofs of several theorems. The presentation is based on natural deduction. The topics include programming interpretation of intuitionistic logic by simply typed lambda-calculus (Curry-Howard isomorphism), negative translation of classical into intuitionistic logic, normalization of natural deductions, applications to category theory, Kripke models, algebraic and topological semantics, proof-search methods, interpolation theorem. The text developed from materal for several courses taught at Stanford University in 1992-1999.
In 1931 Kurt Godel published his fundamental paper, "On Formally Undecidable Propositions of "Principia Mathematica" and Related Systems." This revolutionary paper challenged certain basic assumptions underlying much research in mathematics and logic. Godel received public recognition of his work in 1951 when he was awarded the first Albert Einstein Award for achievement in the natural sciences--perhaps the highest award of its kind in the United States. The award committee described his work in mathematical logic as "one of the greatest contributions to the sciences in recent times." However, few mathematicians of the time were equipped to understand the young scholar's complex proof. Ernest Nagel and James Newman provide a readable and accessible explanation to both scholars and non-specialists of the main ideas and broad implications of Godel's discovery. It offers every educated person with a taste for logic and philosophy the chance to understand a previously difficult and inaccessible subject. Marking the 50th anniversary of the original publication of Godel's Proof, New York University Press is proud to publish this special anniversary edition of one of its bestselling and most frequently translated books. With a new introduction by Douglas R. Hofstadter, this book will appeal students, scholars, and professionals in the fields of mathematics, computer science, logic and philosophy, and science.
This book addresses the argument in the history of the philosophy of science between the positivists and the anti-positivists. The author starts from a point of firm conviction that all science and philosophy must start with the given... But that the range of the given is not definite. He begins with an examination of science from the outside and then the inside, explaining his position on metaphysics and attempts to formulate the character of operational acts before a general theory of symbolism is explored. The last five chapters constitute a treatise to show that the development from one stage of symbolismto the next is inevitable, consequently that explanatory science represents the culmination of knowledge.
Originally published in 1931. This inquiry investigates and develops John Cook Wilson's view of the province of logic. It bases the study on the posthumous collected papers Statement and Inference. The author seeks to answer questions on the nature of logic using Cook Wilson's thought. The chapters introduce and consider topics from metaphysics to grammar and from psychology to knowledge. An early conception of logic in the sciences and presenting the work of an important twentieth century philosopher, this is an engaging work.
Intellectual property owners must continually exploit new ways of reproducing, distributing, and marketing their products. However, the threat of piracy looms as a major problem with digital distribution and storage technologies. Multimedia Encryption and Authentication Techniques and Applications covers current and future trends in the design of modern systems that use encryption and authentication to protect multimedia content. Containing the works of contributing authors who are worldwide experts in their fields, this volume is intended for researchers and practitioners, as well as for those who want a broad understanding of multimedia security. In the wake of the explosive growth of digital entertainment and Internet applications, this book is a definitive resource for scientists, researchers, programmers, engineers, business managers, entrepreneurs, and investors. Features Describes and evaluates the state of the art in multimedia encryption and authentication techniques and related technologies, architectures, standards, and applications Includes advanced topics, such as chaotic encryption techniques for digital images and video, as well as streaming media encryption Focuses on digital rights management issues for video and for consumer devices Covers key management and protection for IP multimedia, digital media fingerprinting, and signature-based media authentication
These volumes present a practical introduction to computing spline functions, the fundamental tools for fitting curves and surfaces in computer-aided deisgn (CAD) and computer graphics. |
![]() ![]() You may like...
Primary Maths for Scotland Textbook 1C…
Craig Lowther, Antoinette Irwin, …
Paperback
Primary Maths for Scotland Textbook 2A…
Craig Lowther, Antoinette Irwin, …
Paperback
Theory and Applications of…
Florentin Smarandache, Madeline Al-Tahan
Hardcover
R7,586
Discovery Miles 75 860
From Quantum Information to Musical…
Maria Luisa Dalla Chiara, Roberto Giuntini, …
Paperback
R560
Discovery Miles 5 600
Emerging Applications of Fuzzy Algebraic…
Chiranjibe Jana, Tapan Senapati, …
Hardcover
R8,848
Discovery Miles 88 480
|