Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Mathematical foundations
Modern applications of logic, in mathematics, theoretical computer science, and linguistics, require combined systems involving many different logics working together. In this book the author offers a basic methodology for combining - or fibring - systems. This means that many existing complex systems can be broken down into simpler components, hence making them much easier to manipulate.
Raymond Smullyan presents a bombshell puzzle so startling that it seems incredible that there could be any solution at all! But there is indeed a solution - moreover, one that requires a chain of lesser puzzles to be solved first. The reader is thus taken on a journey through a maze of subsidiary problems that has all the earmarks of an entertaining detective story.This book leads the unwary reader into deep logical waters through seductively entertaining logic puzzles. One example is Boolean algebra with such weird looking equations as 1+1=0 - a subject which today plays a vital role, not only in mathematical systems, but also in computer science and artificial intelligence.
Raymond Smullyan presents a bombshell puzzle so startling that it seems incredible that there could be any solution at all! But there is indeed a solution - moreover, one that requires a chain of lesser puzzles to be solved first. The reader is thus taken on a journey through a maze of subsidiary problems that has all the earmarks of an entertaining detective story.This book leads the unwary reader into deep logical waters through seductively entertaining logic puzzles. One example is Boolean algebra with such weird looking equations as 1+1=0 - a subject which today plays a vital role, not only in mathematical systems, but also in computer science and artificial intelligence.
The book is a research monograph on the notions of truth and assertibility as they relate to the foundations of mathematics. It is aimed at a general mathematical and philosophical audience. The central novelty is an axiomatic treatment of the concept of assertibility. This provides us with a device that can be used to handle difficulties that have plagued philosophical logic for over a century. Two examples relate to Frege's formulation of second-order logic and Tarski's characterization of truth predicates for formal languages. Both are widely recognized as fundamental advances, but both are also seen as being seriously flawed: Frege's system, as Russell showed, is inconsistent, and Tarski's definition fails to capture the compositionality of truth. A formal assertibility predicate can be used to repair both problems. The repairs are technically interesting and conceptually compelling. The approach in this book will be of interest not only for the uses the author has put it to, but also as a flexible tool that may have many more applications in logic and the foundations of mathematics.
This book introduces ten problem-solving strategies by first presenting the strategy and then applying it to problems in elementary mathematics. In doing so, first the common approach is shown, and then a more elegant strategy is provided. Elementary mathematics is used so that the reader can focus on the strategy and not be distracted by some more sophisticated mathematics.
This book introduces ten problem-solving strategies by first presenting the strategy and then applying it to problems in elementary mathematics. In doing so, first the common approach is shown, and then a more elegant strategy is provided. Elementary mathematics is used so that the reader can focus on the strategy and not be distracted by some more sophisticated mathematics.
This volume provides a forum which highlights new achievements and overviews of recent developments of the thriving logic groups in the Asia-Pacific region. It contains papers by leading logicians and also some contributions in computer science logics and philosophic logics.
The book attempts an elementary exposition of the topics connected with many-valued logics. It gives an account of the constructions being "many-valued" at their origin, i.e. those obtained through intended introduction of logical values next to truth and falsity. To this aim, the matrix method has been chosen as a prevailing manner of presenting the subject. The inquiry throws light upon the profound problem of the criteria of many-valuedness and its classical characterizations. Besides, the reader can find information concerning the main systems of many-valued logic, related axiomatic constructions, and conceptions inspired by many valuedness. The examples of various applications to philosophical logic and some practical domains, as switching theory or Computer Science, helps to see many-valuedness in a wider perspective. Together with a selective bibliography and historical references it makes the work especially useful as a survey and guide in this field of logic.
The transition from school mathematics to university mathematics is seldom straightforward. Students are faced with a disconnect between the algorithmic and informal attitude to mathematics at school, versus a new emphasis on proof, based on logic, and a more abstract development of general concepts, based on set theory. The authors have many years' experience of the potential difficulties involved, through teaching first-year undergraduates and researching the ways in which students and mathematicians think. The book explains the motivation behind abstract foundational material based on students' experiences of school mathematics, and explicitly suggests ways students can make sense of formal ideas. This second edition takes a significant step forward by not only making the transition from intuitive to formal methods, but also by reversing the process- using structure theorems to prove that formal systems have visual and symbolic interpretations that enhance mathematical thinking. This is exemplified by a new chapter on the theory of groups. While the first edition extended counting to infinite cardinal numbers, the second also extends the real numbers rigorously to larger ordered fields. This links intuitive ideas in calculus to the formal epsilon-delta methods of analysis. The approach here is not the conventional one of 'nonstandard analysis', but a simpler, graphically based treatment which makes the notion of an infinitesimal natural and straightforward. This allows a further vision of the wider world of mathematical thinking in which formal definitions and proof lead to amazing new ways of defining, proving, visualising and symbolising mathematics beyond previous expectations.
Logic Works is a critical and extensive introduction to logic. It asks questions about why systems of logic are as they are, how they relate to ordinary language and ordinary reasoning, and what alternatives there might be to classical logical doctrines. The book covers classical first-order logic and alternatives, including intuitionistic, free, and many-valued logic. It also considers how logical analysis can be applied to carefully represent the reasoning employed in academic and scientific work, better understand that reasoning, and identify its hidden premises. Aiming to be as much a reference work and handbook for further, independent study as a course text, it covers more material than is typically covered in an introductory course. It also covers this material at greater length and in more depth with the purpose of making it accessible to those with no prior training in logic or formal systems. Online support material includes a detailed student solutions manual with a running commentary on all starred exercises, and a set of editable slide presentations for course lectures. Key Features Introduces an unusually broad range of topics, allowing instructors to craft courses to meet a range of various objectives Adopts a critical attitude to certain classical doctrines, exposing students to alternative ways to answer philosophical questions about logic Carefully considers the ways natural language both resists and lends itself to formalization Makes objectual semantics for quantified logic easy, with an incremental, rule-governed approach assisted by numerous simple exercises Makes important metatheoretical results accessible to introductory students through a discursive presentation of those results and by using simple case studies
All modern books on Einstein emphasize the genius of his relativity theory and the corresponding corrections and extensions of the ancient space-time concept. However, Einstein s opposition to the use of probability in the laws of nature and particularly in the laws of quantum mechanics is criticized and often portrayed as outdated. The author of Einstein Was Right takes a different view and shows that Einstein created a "Trojan horse" ready to unleash forces against the use of probability as a basis for the laws of nature. Einstein warned that the use of probability would, in the final analysis, lead to "spooky" actions and mysterious instantaneous influences at a distance. John Bell pulled Einstein s Trojan horse into the castle of physics. He developed a theory that, together with experimental results of Aspect, Zeilinger, and others, "proves" the existence of quantum non-localities, instantaneous influences. These have indeed the nature of what Einstein labeled as "spooky." The book Einstein Was Right shows that Bell was not aware of the special role that time and space-time play in any rigorous probability theory. As a consequence, his formalism is not general enough to be applied to the Aspect-Zeilinger type of experiments and his conclusions about the existence of instantaneous influences at a distance are incorrect. This fact suggests a world view that is less optimistic about claims that teleportation and influences at a distance could open new horizons and provide the possibility of quantum computing. On the positive side, however, and as compensation, we are assured that the space-time picture of mankind developed over millions of years and perfected by Einstein, is still able to cope with the phenomena that nature presents us on the atomic and sub-atomic level and that the "quantum weirdness" may be explainable and understandable after all. "
This book is concerned with the optimization problem of maximizing the number of spanning trees of a multigraph. Since a spanning tree is a minimally connected subgraph, graphs and multigraphs having more of these are, in some sense, immune to disconnection by edge failure. We employ a matrix-theoretic approach to the calculation of the number of spanning trees.The authors envision this as a research aid that is of particular interest to graduate students or advanced undergraduate students and researchers in the area of network reliability theory. This would encompass graph theorists of all stripes, including mathematicians, computer scientists, electrical and computer engineers, and operations researchers.
This book is a brief and focused introduction to the reverse mathematics and computability theory of combinatorial principles, an area of research which has seen a particular surge of activity in the last few years. It provides an overview of some fundamental ideas and techniques, and enough context to make it possible for students with at least a basic knowledge of computability theory and proof theory to appreciate the exciting advances currently happening in the area, and perhaps make contributions of their own. It adopts a case-study approach, using the study of versions of Ramsey's Theorem (for colorings of tuples of natural numbers) and related principles as illustrations of various aspects of computability theoretic and reverse mathematical analysis. This book contains many exercises and open questions.
This is a mathematically-oriented advanced text in modal logic, a discipline conceived in philosophy and having found applications in mathematics, artificial intelligence, linguistics, and computer science. It presents in a systematic and comprehensive way a wide range of classical and novel methods and results and can be used by a specialist as a reference book.
This book studies the universal constructions and properties in categories of commutative algebras, bringing out the specific properties that make commutative algebra and algebraic geometry work. Two universal constructions are presented and used here for the first time. The author shows that the concepts and constructions arising in commutative algebra and algebraic geometry are not bound so tightly to the absolute universe of rings, but possess a universality that is independent of them and can be interpreted in various categories of discourse. This brings new flexibility to classical commutative algebra and affords the possibility of extending the domain of validity and the application of the vast number of results obtained in classical commutative algebra. This innovative and original work will interest mathematicians in a range of specialities, including algebraists, categoricians, and algebraic geometers.
Although sequent calculi constitute an important category of proof systems, they are not as well known as axiomatic and natural deduction systems. Addressing this deficiency, Proof Theory: Sequent Calculi and Related Formalisms presents a comprehensive treatment of sequent calculi, including a wide range of variations. It focuses on sequent calculi for various non-classical logics, from intuitionistic logic to relevance logic, linear logic, and modal logic. In the first chapters, the author emphasizes classical logic and a variety of different sequent calculi for classical and intuitionistic logics. She then presents other non-classical logics and meta-logical results, including decidability results obtained specifically using sequent calculus formalizations of logics. The book is suitable for a wide audience and can be used in advanced undergraduate or graduate courses. Computer scientists will discover intriguing connections between sequent calculi and resolution as well as between sequent calculi and typed systems. Those interested in the constructive approach will find formalizations of intuitionistic logic and two calculi for linear logic. Mathematicians and philosophers will welcome the treatment of a range of variations on calculi for classical logic. Philosophical logicians will be interested in the calculi for relevance logics while linguists will appreciate the detailed presentation of Lambek calculi and their extensions.
This volume presents the lecture notes of short courses given by three leading experts in mathematical logic at the 2012 Asian Initiative for Infinity Logic Summer School. The major topics cover set-theoretic forcing, higher recursion theory, and applications of set theory to C*-algebra. This volume offers a wide spectrum of ideas and techniques introduced in contemporary research in the field of mathematical logic to students, researchers and mathematicians.
This volume presents the lecture notes of short courses given by three leading experts in mathematical logic at the 2012 Asian Initiative for Infinity Logic Summer School. The major topics cover set-theoretic forcing, higher recursion theory, and applications of set theory to C*-algebra. This volume offers a wide spectrum of ideas and techniques introduced in contemporary research in the field of mathematical logic to students, researchers and mathematicians.
The nature of truth in mathematics is a problem which has exercised the minds of thinkers from at least the time of the ancient Greeks. The great advances in mathematics and philosophy in the twentieth century--and in particular the proof of Gödel's theorem and the development of the notion of independence in mathematics--have led to new viewpoints on his question. This book is the result of the interaction of a number of outstanding mathematicians and philosophers--including Yurii Manin, Vaughan Jones, and Per Martin-Löf--and their discussions of this problem. It provides an overview of the forefront of current thinking, and is a valuable introduction and reference for researchers in the area.
Logic concepts are more mainstream than you may realize. There's logic every place you look and in almost everything you do, from deciding which shirt to buy to asking your boss for a raise, and even to watching television, where themes of such shows as "CSI" and "Numbers" incorporate a variety of logistical studies. "Logic For Dummies" explains a vast array of logical concepts and processes in easy-to-understand language that make everything clear to you, whether you're a college student of a student of life. You'll find out about: Formal LogicSyllogismsConstructing proofs and refutationsPropositional and predicate logicModal and fuzzy logicSymbolic logicDeductive and inductive reasoning L"ogic For Dummies" tracks an introductory logic course at the college level. Concrete, real-world examples help you understand each concept you encounter, while fully worked out proofs and fun logic problems encourage you students to apply what you've learned.
Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbidding that it is only accessible to specialists. In the past decade, a series of remarkable solutions to long-standing problems in C*-algebra using set-theoretic methods, many achieved by the author and his collaborators, have generated new interest in this subject. This is the first book aimed at explaining forcing to general mathematicians. It simultaneously makes the subject broadly accessible by explaining it in a clear, simple manner, and surveys advanced applications of set theory to mainstream topics.
The ultimate lateral-thinking challenge. If you relish a serious mental workout, this collection of 100 brain teasers will demand your very best lateral thinking skills and mathematical rigour to solve. These puzzles will amuse and perplex in equal measure. But do not worry, full, detailed solutions are found at the back of the book so you can get into the head of these fiendish setters! These mental puzzles require serious application, imagination and skill to solve. Some demand a logical approach, others a methodical, mathematical mind. Are you up to the challenge of solving these rigorous but entertaining mathematical puzzles?
In the mathematical practice, the Baire category method is a tool for establishing the existence of a rich array of generic structures. However, in mathematics, the Baire category method is also behind a number of fundamental results such as the Open Mapping Theorem or the Banach-Steinhaus Boundedness Principle. This volume brings the Baire category method to another level of sophistication via the internal version of the set-theoretic forcing technique. It is the first systematic account of applications of the higher forcing axioms with the stress on the technique of building forcing notions rather than on the relationship between different forcing axioms or their consistency strengths.
This book is an introduction to a functorial model theory based on infinitary language categories. The author introduces the properties and foundation of these categories before developing a model theory for functors starting with a countable fragment of an infinitary language. He also presents a new technique for generating generic models with categories by inventing infinite language categories and functorial model theory. In addition, the book covers string models, limit models, and functorial models.
This book is concerned with tangent cones, duality formulas, a generalized concept of conjugation, and the notion of maxi-minimizing sequence for a saddle-point problem, and deals more with algorithms in optimization. It focuses on the multiple exchange algorithm in convex programming. |
You may like...
Mathematical Proofs: A Transition to…
Gary Chartrand, Albert Polimeni, …
Paperback
R2,185
Discovery Miles 21 850
Mathematics For Computation (M4c)
Marco Benini, Olaf Beyersdorff, …
Hardcover
R3,761
Discovery Miles 37 610
Elementary Lessons in Logic - Deductive…
William Stanley Jevons
Paperback
R535
Discovery Miles 5 350
The Art of Logic - How to Make Sense in…
Eugenia Cheng
Paperback
(1)
Primary Maths for Scotland Textbook 2A…
Craig Lowther, Antoinette Irwin, …
Paperback
|