![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations
Distributed and peer-to-peer (P2P) applications are increasing daily, and cyberattacks are constantly adopting new mechanisms to threaten the security and privacy of users in these Internet of Things (IoT) environments. Blockchain, a decentralized cryptographic-based technology, is a promising element for IoT security in manufacturing, finance, healthcare, supply chain, identity management, e-governance, defence, education, banking, and trading. Blockchain has the potential to secure IoT through repetition, changeless capacity, and encryption. Blockchain for Information Security and Privacy provides essential knowledge of blockchain usage in the mainstream areas of security, trust, and privacy in decentralized domains. This book is a source of technical information regarding blockchain-oriented software and applications. It provides tools to researchers and developers in both computing and software engineering to develop solutions and automated systems that can promote security, trust, and privacy in cyberspace. FEATURES Applying blockchain-based secured data management in confidential cyberdefense applications Securing online voting systems using blockchain Safeguarding electronic healthcare record (EHR) management using blockchain Impacting security and privacy in digital identity management Using blockchain-based security and privacy for smart contracts By providing an overview of blockchain technology application domains in IoT (e.g., vehicle web, power web, cloud internet, and edge computing), this book features side-by-side comparisons of modern methods toward secure and privacy-preserving blockchain technology. It also examines safety objectives, efficiency, limitations, computational complexity, and communication overhead of various applications using blockchain. This book also addresses the combination of blockchain and industrial IoT. It explores novel various-levels of information sharing systems.
This book offers a defense against non-classical approaches to the paradoxes. The author argues that, despite appearances, the paradoxes give no reason at all to reject classical logic. In fact, he believes classical solutions fare better than non-classical ones with respect to key tests like Curry's Paradox, a Liar-like paradox that dialetheists are forced to solve in a way totally disjoint from their solution to the Liar. Graham Priest's In Contradiction was the first major work that advocated the use of non-classical approaches. Since then, these views have moved into the philosophical mainstream. Much of this movement is fueled by a widespread sense that these logically heterodox solutions get to the real nub of the issue. They lack the ad hoc feel of many other solutions to the paradoxes. The author believes that it's long past time for a response to these attacks against classical orthodoxy. He presents a non-logically-revisionary solution to the paradoxes. This title offers a literal way of cashing out the disquotation metaphor. While the details of the view are novel, the idea has a pre-history in the relevant literature. The author examines objections in detail. He rejects each in turn and concludes by comparing the virtues of his logically orthodox approach with those of the paraconsistent and paracomplete competition.
Introduction to the Theory of Optimization in Euclidean Space is intended to provide students with a robust introduction to optimization in Euclidean space, demonstrating the theoretical aspects of the subject whilst also providing clear proofs and applications. Students are taken progressively through the development of the proofs, where they have the occasion to practice tools of differentiation (Chain rule, Taylor formula) for functions of several variables in abstract situations. Throughout this book, students will learn the necessity of referring to important results established in advanced Algebra and Analysis courses. Features Rigorous and practical, offering proofs and applications of theorems Suitable as a textbook for advanced undergraduate students on mathematics or economics courses, or as reference for graduate-level readers Introduces complex principles in a clear, illustrative fashion
* This is a textbook on philosophy of mathematics from the point of view of a mathematician, aimed to attract mathematicians into foundational and philosophical problems in mathematics and help them learn how and to what extent a philosophical view can change the mathematical practice. * It contains up to date and current book available. * The text will appeal to both mathematicians and philosophy departments where Philosophy of Mathematics or Philosophy of Science is taught.
College students struggle with the switch from thinking of mathematics as a calculation based subject to a problem solving based subject. This book describes how the introduction to proofs course can be taught in a way that gently introduces students to this new way of thinking. This introduction utilizes recent research in neuroscience regarding how the brain learns best. Rather than jumping right into proofs, students are first taught how to change their mindset about learning, how to persevere through difficult problems, how to work successfully in a group, and how to reflect on their learning. With these tools in place, students then learn logic and problem solving as a further foundation.Next various proof techniques such as direct proofs, proof by contraposition, proof by contradiction, and mathematical induction are introduced. These proof techniques are introduced using the context of number theory. The last chapter uses Calculus as a way for students to apply the proof techniques they have learned.
Decision Theory An Introduction to Dynamic Programming and
Sequential Decisions John Bather University of Sussex, UK
Mathematical induction, and its use in solving optimization
problems, is a topic of great interest with many applications. It
enables us to study multistage decision problems by proceeding
backwards in time, using a method called dynamic programming. All
the techniques needed to solve the various problems are explained,
and the author's fluent style will leave the reader with an avid
interest in the subject.
Logic Works is a critical and extensive introduction to logic. It asks questions about why systems of logic are as they are, how they relate to ordinary language and ordinary reasoning, and what alternatives there might be to classical logical doctrines. The book covers classical first-order logic and alternatives, including intuitionistic, free, and many-valued logic. It also considers how logical analysis can be applied to carefully represent the reasoning employed in academic and scientific work, better understand that reasoning, and identify its hidden premises. Aiming to be as much a reference work and handbook for further, independent study as a course text, it covers more material than is typically covered in an introductory course. It also covers this material at greater length and in more depth with the purpose of making it accessible to those with no prior training in logic or formal systems. Online support material includes a detailed student solutions manual with a running commentary on all starred exercises, and a set of editable slide presentations for course lectures. Key Features Introduces an unusually broad range of topics, allowing instructors to craft courses to meet a range of various objectives Adopts a critical attitude to certain classical doctrines, exposing students to alternative ways to answer philosophical questions about logic Carefully considers the ways natural language both resists and lends itself to formalization Makes objectual semantics for quantified logic easy, with an incremental, rule-governed approach assisted by numerous simple exercises Makes important metatheoretical results accessible to introductory students through a discursive presentation of those results and by using simple case studies
Originally published in 1995 Time and Logic examines understanding and application of temporal logic, presented in computational terms. The emphasis in the book is on presenting a broad range of approaches to computational applications. The techniques used will also be applicable in many cases to formalisms beyond temporal logic alone, and it is hoped that adaptation to many different logics of program will be facilitated. Throughout, the authors have kept implementation-orientated solutions in mind. The book begins with an introduction to the basic ideas of temporal logic. Successive chapters examine particular aspects of the temporal theoretical computing domain, relating their applications to familiar areas of research, such as stochastic process theory, automata theory, established proof systems, model checking, relational logic and classical predicate logic. This is an essential addition to the library of all theoretical computer scientists. It is an authoritative work which will meet the needs both of those familiar with the field and newcomers to it.
Recursive Functions and Metamathematics deals with problems of the completeness and decidability of theories, using as its main tool the theory of recursive functions. This theory is first introduced and discussed. Then G del's incompleteness theorems are presented, together with generalizations, strengthenings, and the decidability theory. The book also considers the historical and philosophical context of these issues and their philosophical and methodological consequences. Recent results and trends have been included, such as undecidable sentences of mathematical content, reverse mathematics. All the main results are presented in detail. The book is self-contained and presupposes only some knowledge of elementary mathematical logic. There is an extensive bibliography. Readership: Scholars and advanced students of logic, mathematics, philosophy of science.
This monograph provides a modern introduction to the theory of quantales. First coined by C.J. Mulvey in 1986, quantales have since developed into a significant topic at the crossroads of algebra and logic, of notable interest to theoretical computer science. This book recasts the subject within the powerful framework of categorical algebra, showcasing its versatility through applications to C*- and MV-algebras, fuzzy sets and automata. With exercises and historical remarks at the end of each chapter, this self-contained book provides readers with a valuable source of references and hints for future research. This book will appeal to researchers across mathematics and computer science with an interest in category theory, lattice theory, and many-valued logic.
Features Over sixty paper stars, all made without cutting, gluing or decorating using the modular origami technique Hundreds of clear step-by-step instructions show you how, based on the technique of folding a small number of simple units and joining them together as a satisfying puzzle Secrets tips to make new shapes just by varying a few lengths and angles Suitable for teaching and learning art, geometry and mathematics. Teachers will appreciate the practical advice to succeed in using origami for education.
Wallis's book on discrete mathematics is a resource for an introductory course in a subject fundamental to both mathematics and computer science, a course that is expected not only to cover certain specific topics but also to introduce students to important modes of thought specific to each discipline . . . Lower-division undergraduates through graduate students. -Choice reviews (Review of the First Edition) Very appropriately entitled as a 'beginner's guide', this textbook presents itself as the first exposure to discrete mathematics and rigorous proof for the mathematics or computer science student. -Zentralblatt Math (Review of the First Edition) This second edition of A Beginner's Guide to Discrete Mathematics presents a detailed guide to discrete mathematics and its relationship to other mathematical subjects including set theory, probability, cryptography, graph theory, and number theory. This textbook has a distinctly applied orientation and explores a variety of applications. Key Features of the second edition: * Includes a new chapter on the theory of voting as well as numerous new examples and exercises throughout the book * Introduces functions, vectors, matrices, number systems, scientific notations, and the representation of numbers in computers * Provides examples which then lead into easy practice problems throughout the text and full exercise at the end of each chapter * Full solutions for practice problems are provided at the end of the book This text is intended for undergraduates in mathematics and computer science, however, featured special topics and applications may also interest graduate students.
Features Over sixty paper stars, all made without cutting, gluing or decorating using the modular origami technique Hundreds of clear step-by-step instructions show you how, based on the technique of folding a small number of simple units and joining them together as a satisfying puzzle Secrets tips to make new shapes just by varying a few lengths and angles Suitable for teaching and learning art, geometry and mathematics. Teachers will appreciate the practical advice to succeed in using origami for education.
This book offers a historical explanation of important philosophical problems in logic and mathematics, which have been neglected by the official history of modern logic. It offers extensive information on Gottlob Frege's logic, discussing which aspects of his logic can be considered truly innovative in its revolution against the Aristotelian logic. It presents the work of Hilbert and his associates and followers with the aim of understanding the revolutionary change in the axiomatic method. Moreover, it offers useful tools to understand Tarski's and Goedel's work, explaining why the problems they discussed are still unsolved. Finally, the book reports on some of the most influential positions in contemporary philosophy of mathematics, i.e., Maddy's mathematical naturalism and Shapiro's mathematical structuralism. Last but not least, the book introduces Biancani's Aristotelian philosophy of mathematics as this is considered important to understand current philosophical issue in the applications of mathematics. One of the main purposes of the book is to stimulate readers to reconsider the Aristotelian position, which disappeared almost completely from the scene in logic and mathematics in the early twentieth century.
Philosophers of science have produced a variety of definitions for the notion of one sentence, theory or hypothesis being closer to the truth, more verisimilar, or more truthlike than another one. The definitions put forward by philosophers presuppose at least implicitly that the subject matter with which the compared sentences, theories or hypotheses are concerned has been specified,! and the property of closeness to the truth, verisimilitude or truth likeness appearing in such definitions should be understood as closeness to informative truth about that subject matter. This monograph is concerned with a special case of the problem of defining verisimilitude, a case in which this subject matter is of a rather restricted kind. Below, I shall suppose that there is a finite number of interrelated quantities which are used for characterizing the state of some system. Scientists might arrive at different hypotheses concerning the values of such quantities in a variety of ways. There might be various theories that give different predictions (whose informativeness might differ , too) on which combinations of the values of these quantities are possible. Scientists might also have measured all or some of the quantities in question with some accuracy. Finally, they might also have combined these two methods of forming hypotheses on their values by first measuring some of the quantities and then deducing the values of some others from the combination of a theory and the measurement results.
1 2 Harald Atmanspacher and Hans Primas 1 Institute for Frontier Areas of Psychology, Freiburg, Germany, [email protected] 2 ETH Zurich, Switzerland, [email protected] Thenotionofrealityisofsupremesigni?canceforourunderstandingofnature, the world around us, and ourselves. As the history of philosophy shows, it has been under permanent discussion at all times. Traditional discourse about - ality covers the full range from basic metaphysical foundations to operational approaches concerning human kinds of gathering and utilizing knowledge, broadly speaking epistemic approaches. However, no period in time has ex- rienced a number of moves changing and, particularly, restraining traditional concepts of reality that is comparable to the 20th century. Early in the 20th century, quite an in?uential move of such a kind was due to the so-called Copenhagen interpretation of quantum mechanics, laid out essentially by Bohr, Heisenberg, and Pauli in the mid 1920s. Bohr's dictum, quoted by Petersen (1963, p.12), was that "it is wrong to think that the task of physics is to ?nd out how nature is. Physics concerns what we can say about nature." Although this standpoint was not left unopposed - Einstein, Schr] odinger, and others were convinced that it is the task of science to ?nd out about nature itself - epistemic, operational attitudes have set the fashion for many discussions in the philosophy of physics (and of science in general) until today."
This book, Algebraic Computability and Enumeration Models: Recursion Theory and Descriptive Complexity, presents new techniques with functorial models to address important areas on pure mathematics and computability theory from the algebraic viewpoint. The reader is first introduced to categories and functorial models, with Kleene algebra examples for languages. Functorial models for Peano arithmetic are described toward important computational complexity areas on a Hilbert program, leading to computability with initial models. Infinite language categories are also introduced to explain descriptive complexity with recursive computability with admissible sets and urelements. Algebraic and categorical realizability is staged on several levels, addressing new computability questions with omitting types realizably. Further applications to computing with ultrafilters on sets and Turing degree computability are examined. Functorial models computability is presented with algebraic trees realizing intuitionistic types of models. New homotopy techniques are applied to Marin Lof types of computations with model categories. Functorial computability, induction, and recursion are examined in view of the above, presenting new computability techniques with monad transformations and projective sets. This informative volume will give readers a complete new feel for models, computability, recursion sets, complexity, and realizability. This book pulls together functorial thoughts, models, computability, sets, recursion, arithmetic hierarchy, filters, with real tree computing areas, presented in a very intuitive manner for university teaching, with exercises for every chapter. The book will also prove valuable for faculty in computer science and mathematics.
Blockchain is a technology that has attracted the attention of all types of businesses. Cryptocurrency such as Bitcoin has gained the most attention, but now companies are applying Blockchain technology to develop solutions improving traditional applications and securing all types of transactions. Robust and innovative, this technology is being combined with other well-known technologies including Cloud Computing, Big Data, and IoT to revolutionize outcomes in all verticals. Unlike books focused on financial applications, Essential Enterprise Blockchain Concepts and Applications is for researchers and practitioners who are looking for secure, viable, low-cost, and workable applications to solve a broad range of business problems. The book presents research that rethinks how to incorporate Blockchain with existing technology. Chapters cover various applications based on Blockchain technology including: Digital voting Smart contracts Supply chain management Internet security Logistics management Identity management Securing medical devices Asset management Blockchain plays a significant role in providing security for data operations. It defines how trusted transactions can be carried out and addresses Internet vulnerability problems. Blockchain solves the security fault line between AI and IoT in smart systems as well as in other systems using devices connected to each other through public networks. Linear and permanent indexed records are maintained by Blockchain to face the vulnerability issues in a wide variety applications. In addition to applications, the book also covers consensus algorithms and protocols and performance of Blockchain algorithms.
Between the two world wars, Stanislaw Lesniewski (1886-1939), created the famous and important system of foundations of mathematics that comprises three deductive theories: Protothetic, Ontology, and Mereology. His research started in 1914 with studies on the general theory of sets (later named `Mereology'). Ontology followed between 1919 and 1921, and was the next step towards an integrated system. In order to combine these two systematically he constructed Protothetic - the system of `first principles'. Together they amount to what Z. Jordan called `... most thorough, original, and philosophically significant attempt to provide a logically secure foundation for the whole of mathematics'. The volume collects many of the most significant commentaries on, and contributions to, Protothetic. A Protothetic Bibliography is included.
Already in just a decade of existence, cryptocurrencies have been the world's best-performing financial asset, outperforming stocks, bonds, commodities and currencies. This comprehensive yet concise book will enable the reader to learn about the nuts and bolts of cryptocurrencies, including their history, technology, regulations and economics. Additionally, this book teaches sound investment strategies that already work along with the spectrum of risks and returns. This book provides a plain-language primer for beginners worldwide on how to confidently navigate the rapidly evolving world of cryptocurrencies. Beginning by cutting to the chase, the author lists the common burning questions about cryptocurrency and provides succinct answers. Next, he gives an overview of cryptocurrency's underlying technology: blockchain. He then explores the history of cryptocurrency and why it's attracted so much attention. With that foundation, readers will be ready to understand how to invest in cryptocurrency: how cryptocurrency differs from traditional investments such as stocks, how to decide which cryptocurrency to invest in, how to acquire it, how to send and receive it, along with investment strategies. Additionally, legal issues, social implications, cybersecurity risks and the vocabulary of cryptocurrency are also covered, including Bitcoin and the many alternative cryptocurrencies. Written by a journalist-turned-professor, this book's appeal lies in its succinct, informative and easy-to-understand style. It will be of great interest to anyone looking to further their understanding of what cryptocurrency is, why it's a big deal, how to acquire it, how to send and receive it, and investment strategies.
The theory of Boolean algebras was created in 1847 by the English mat- matician George Boole. He conceived it as a calculus (or arithmetic) suitable for a mathematical analysis of logic. The form of his calculus was rather di?erent from the modern version, which came into being during the - riod 1864-1895 through the contributions of William Stanley Jevons, Aug- tus De Morgan, Charles Sanders Peirce, and Ernst Schr. oder. A foundation of the calculus as an abstract algebraic discipline, axiomatized by a set of equations, and admitting many di?erent interpretations, was carried out by Edward Huntington in 1904. Only with the work of Marshall Stone and Alfred Tarski in the 1930s, however, did Boolean algebra free itself completely from the bonds of logic and become a modern mathematical discipline, with deep theorems and - portantconnections toseveral otherbranchesofmathematics, includingal- bra,analysis, logic, measuretheory, probability andstatistics, settheory, and topology. For instance, in logic, beyond its close connection to propositional logic, Boolean algebra has found applications in such diverse areas as the proof of the completeness theorem for ?rst-order logic, the proof of the Lo ' s conjecture for countable ? rst-order theories categorical in power, and proofs of the independence of the axiom of choice and the continuum hypothesis ? in set theory. In analysis, Stone's discoveries of the Stone-Cech compac- ?cation and the Stone-Weierstrass approximation theorem were intimately connected to his study of Boolean algebras.
Algebra & Geometry: An Introduction to University Mathematics, Second Edition provides a bridge between high school and undergraduate mathematics courses on algebra and geometry. The author shows students how mathematics is more than a collection of methods by presenting important ideas and their historical origins throughout the text. He incorporates a hands-on approach to proofs and connects algebra and geometry to various applications. The text focuses on linear equations, polynomial equations, and quadratic forms. The first few chapters cover foundational topics, including the importance of proofs and a discussion of the properties commonly encountered when studying algebra. The remaining chapters form the mathematical core of the book. These chapters explain the solutions of different kinds of algebraic equations, the nature of the solutions, and the interplay between geometry and algebra. New to the second edition Several updated chapters, plus an all-new chapter discussing the construction of the real numbers by means of approximations by rational numbers Includes fifteen short 'essays' that are accessible to undergraduate readers, but which direct interested students to more advanced developments of the material Expanded references Contains chapter exercises with solutions provided online at www.routledge.com/9780367563035
Project Origami: Activities for Exploring Mathematics, Second Edition presents a flexible, discovery-based approach to learning origami-math topics. It helps readers see how origami intersects a variety of mathematical topics, from the more obvious realm of geometry to the fields of algebra, number theory, and combinatorics. With over 100 new pages, this updated and expanded edition now includes 30 activities and offers better solutions and teaching tips for all activities. The book contains detailed plans for 30 hands-on, scalable origami activities. Each activity lists courses in which the activity might fit, includes handouts for classroom use, and provides notes for instructors on solutions, how the handouts can be used, and other pedagogical suggestions. The handouts are also available on the book's CRC Press web page. Reflecting feedback from teachers and students who have used the book, this classroom-tested text provides an easy and entertaining way for teachers to incorporate origami into a range of college and advanced high school math courses. Visit the author's website for more information.
Originally published in 1995, Large Deviations for Performance Analysis consists of two synergistic parts. The first half develops the theory of large deviations from the beginning, through recent results on the theory for processes with boundaries, keeping to a very narrow path: continuous-time, discrete-state processes. By developing only what is needed for the applications, the theory is kept to a manageable level, both in terms of length and in terms of difficulty. Within its scope, the treatment is detailed, comprehensive and self-contained. As the book shows, there are sufficiently many interesting applications of jump Markov processes to warrant a special treatment. The second half is a collection of applications developed at Bell Laboratories. The applications cover large areas of the theory of communication networks: circuit switched transmission, packet transmission, multiple access channels, and the M/M/1 queue. Aspects of parallel computation are covered as well including, basics of job allocation, rollback-based parallel simulation, assorted priority queueing models that might be used in performance models of various computer architectures, and asymptotic coupling of processors. These applications are thoroughly analysed using the tools developed in the first half of the book.
Written by two well-known scholars in the field, Combinatorial Reasoning: An Introduction to the Art of Counting presents a clear and comprehensive introduction to the concepts and methodology of beginning combinatorics. Focusing on modern techniques and applications, the book develops a variety of effective approaches to solving counting problems. Balancing abstract ideas with specific topical coverage, the book utilizes real world examples with problems ranging from basic calculations that are designed to develop fundamental concepts to more challenging exercises that allow for a deeper exploration of complex combinatorial situations. Simple cases are treated first before moving on to general and more advanced cases. Additional features of the book include: Approximately 700 carefully structured problems designed for readers at multiple levels, many with hints and/or short answers Numerous examples that illustrate problem solving using both combinatorial reasoning and sophisticated algorithmic methods A novel approach to the study of recurrence sequences, which simplifies many proofs and calculations Concrete examples and diagrams interspersed throughout to further aid comprehension of abstract concepts A chapter-by-chapter review to clarify the most crucial concepts covered Combinatorial Reasoning: An Introduction to the Art of Counting is an excellent textbook for upper-undergraduate and beginning graduate-level courses on introductory combinatorics and discrete mathematics. |
![]() ![]() You may like...
Mathematical Research for Blockchain…
Panos Pardalos, Ilias Kotsireas, …
Hardcover
R4,369
Discovery Miles 43 690
Vibration Utilization Engineering
Bangchun Wen, XianLi Huang, …
Hardcover
R4,597
Discovery Miles 45 970
Complex Systems and Their Applications…
Guillermo Huerta-Cuellar, Eric Campos Canton, …
Hardcover
R5,604
Discovery Miles 56 040
Handbook of Medical Image Computing and…
S. Kevin Zhou, Daniel Rueckert, …
Hardcover
Statistics and Analysis of Scientific…
Massimiliano Bonamente
Hardcover
Deep Learning and Convolutional Neural…
Le Lu, Xiaosong Wang, …
Hardcover
|