![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations
Mathematical Proofs: A Transition to Advanced Mathematics, Third Edition, prepares students for the more abstract mathematics courses that follow calculus. Appropriate for self-study or for use in the classroom, this text introduces students to proof techniques, analyzing proofs, and writing proofs of their own. Written in a clear, conversational style, this book provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as the theoretical aspects of fields such as number theory, abstract algebra, and group theory. It is also a great reference text that students can look back to when writing or reading proofs in their more advanced courses.
This book is for graduate students and researchers, introducing modern foundational research in mathematics, computer science, and philosophy from an interdisciplinary point of view. Its scope includes proof theory, constructive mathematics and type theory, univalent mathematics and point-free approaches to topology, extraction of certified programs from proofs, automated proofs in the automotive industry, as well as the philosophical and historical background of proof theory. By filling the gap between (under-)graduate level textbooks and advanced research papers, the book gives a scholarly account of recent developments and emerging branches of the aforementioned fields.
This book presents the latest research, conducted by leading philosophers and scientists from various fields, on the topic of top-down causation. The chapters combine to form a unique, interdisciplinary perspective, drawing upon George Ellis's extensive research and novel perspectives on topics including downwards causation, weak and strong emergence, mental causation, biological relativity, effective field theory and levels in nature. The collection also serves as a Festschrift in honour of George Ellis' 80th birthday. The extensive and interdisciplinary scope of this book makes it vital reading for anyone interested in the work of George Ellis and current research on the topics of causation and emergence.
The book is about strong axioms of infi nity in set theory (also known as large cardinal axioms), and the ongoing search for natural models of these axioms. Assuming the Ultrapower Axiom, a combinatorial principle conjectured to hold in all such natural models, we solve various classical problems in set theory (for example, the Generalized Continuum Hypothesis) and uncover a theory of large cardinals that is much clearer than the one that can be developed using only the standard axioms.
This book presents a collection of recent research on topics related to Pythagorean fuzzy set, dealing with dynamic and complex decision-making problems. It discusses a wide range of theoretical and practical information to the latest research on Pythagorean fuzzy sets, allowing readers to gain an extensive understanding of both fundamentals and applications. It aims at solving various decision-making problems such as medical diagnosis, pattern recognition, construction problems, technology selection, and more, under the Pythagorean fuzzy environment, making it of much value to students, researchers, and professionals associated with the field.
This book features more than 20 papers that celebrate the work of Hajnal Andreka and Istvan Nemeti. It illustrates an interaction between developing and applying mathematical logic. The papers offer new results as well as surveys in areas influenced by these two outstanding researchers. They also provide details on the after-life of some of their initiatives. Computer science connects the papers in the first part of the book. The second part concentrates on algebraic logic. It features a range of papers that hint at the intricate many-way connections between logic, algebra, and geometry. The third part explores novel applications of logic in relativity theory, philosophy of logic, philosophy of physics and spacetime, and methodology of science. They include such exciting subjects as time travelling in emergent spacetime. The short autobiographies of Hajnal Andreka and Istvan Nemeti at the end of the book describe an adventurous journey from electric engineering and Maxwell's equations to a complex system of computer programs for designing Hungary's electric power system, to exploring and contributing deep results to Tarskian algebraic logic as the deepest core theory of such questions, then on to applications of the results in such exciting new areas as relativity theory in order to rejuvenate logic itself.
This monograph presents a general theory of weakly implicative logics, a family covering a vast number of non-classical logics studied in the literature, concentrating mainly on the abstract study of the relationship between logics and their algebraic semantics. It can also serve as an introduction to (abstract) algebraic logic, both propositional and first-order, with special attention paid to the role of implication, lattice and residuated connectives, and generalized disjunctions. Based on their recent work, the authors develop a powerful uniform framework for the study of non-classical logics. In a self-contained and didactic style, starting from very elementary notions, they build a general theory with a substantial number of abstract results. The theory is then applied to obtain numerous results for prominent families of logics and their algebraic counterparts, in particular for superintuitionistic, modal, substructural, fuzzy, and relevant logics. The book may be of interest to a wide audience, especially students and scholars in the fields of mathematics, philosophy, computer science, or related areas, looking for an introduction to a general theory of non-classical logics and their algebraic semantics.
This book examines the true core of philosophy and metaphysics, taking account of quantum and relativity theory as it applies to physical Reality, and develops a line of reasoning that ultimately leads us to Reality as it is currently understood at the most fundamental level - the Standard Model of Elementary Particles. This book develops new formalisms for Logic that are of interest in themselves and also provide a Platonic bridge to Reality. The bridge to Reality will be explored in detail in a subsequent book, Relativistic Quantum Metaphysics: A First Principles Basis for the Standard Model of Elementary Particles. We anticipate that the current "fundamental" level of physical Reality may be based on a still lower level and/or may have additional aspects remaining to be found. However the effects of certain core features such as quantum theory and relativity theory will persist even if a lower level of Reality is found, and these core features suggest the form of a new Metaphysics of physical Reality. We have coined the phrase "Operator Metaphysics" for this new metaphysics of physical Reality. The book starts by describing aspects of Philosophy and Metaphysics relevant to the study of current physical Reality. Part of this development are new Logics, Operator Logic and Quantum Operator Logic, developed in earlier books by this author (and revised and expanded in this book). Using them we are led to develop a connection to the beginnings of The Standard Model of Elementary Particles. While mathematics is essential in the latter stages of the book we have tried to present it with sufficient text discussion to make what it is doing understandable to the non-mathematical reader. Generally we will avoid using the jargon of Philosophy, Logic and Physics as much as possible.
This is a systematic and well-paced introduction to mathematical logic. Excellent as a course text, the book presupposes only elementary background and can be used also for self-study by more ambitious students.Starting with the basics of set theory, induction and computability, it covers propositional and first-order logic - their syntax, reasoning systems and semantics. Soundness and completeness results for Hilbert's and Gentzen's systems are presented, along with simple decidability arguments. The general applicability of various concepts and techniques is demonstrated by highlighting their consistent reuse in different contexts.Unlike in most comparable texts, presentation of syntactic reasoning systems precedes the semantic explanations. The simplicity of syntactic constructions and rules - of a high, though often neglected, pedagogical value - aids students in approaching more complex semantic issues. This order of presentation also brings forth the relative independence of syntax from the semantics, helping to appreciate the importance of the purely symbolic systems, like those underlying computers.An overview of the history of logic precedes the main text, while informal analogies precede introduction of most central concepts. These informal aspects are kept clearly apart from the technical ones. Together, they form a unique text which may be appreciated equally by lecturers and students occupied with mathematical precision, as well as those interested in the relations of logical formalisms to the problems of computability and the philosophy of logic.
This is a systematic and well-paced introduction to mathematical logic. Excellent as a course text, the book presupposes only elementary background and can be used also for self-study by more ambitious students.Starting with the basics of set theory, induction and computability, it covers propositional and first-order logic - their syntax, reasoning systems and semantics. Soundness and completeness results for Hilbert's and Gentzen's systems are presented, along with simple decidability arguments. The general applicability of various concepts and techniques is demonstrated by highlighting their consistent reuse in different contexts.Unlike in most comparable texts, presentation of syntactic reasoning systems precedes the semantic explanations. The simplicity of syntactic constructions and rules - of a high, though often neglected, pedagogical value - aids students in approaching more complex semantic issues. This order of presentation also brings forth the relative independence of syntax from the semantics, helping to appreciate the importance of the purely symbolic systems, like those underlying computers.An overview of the history of logic precedes the main text, while informal analogies precede introduction of most central concepts. These informal aspects are kept clearly apart from the technical ones. Together, they form a unique text which may be appreciated equally by lecturers and students occupied with mathematical precision, as well as those interested in the relations of logical formalisms to the problems of computability and the philosophy of logic.
|
![]() ![]() You may like...
Mob Control: Models of Threshold…
Vladimir V. Breer, Dmitry A. Novikov, …
Hardcover
Computational Intelligence - Theoretical…
Dinesh C.S. Bisht, Mangey Ram
Hardcover
R4,538
Discovery Miles 45 380
Vibration Engineering and Technology of…
Jose-Manoel Balthazar
Hardcover
R5,951
Discovery Miles 59 510
Sets and Extensions in the Twentieth…
Dov M. Gabbay, Akihiro Kanamori, …
Hardcover
R7,599
Discovery Miles 75 990
George Boole - Selected Manuscripts on…
Ivor Grattan-Guinness, G erard Bornet
Hardcover
R1,762
Discovery Miles 17 620
Philosophical Dimensions of Logic and…
Artur Rojszczak, Jacek Cachro, …
Hardcover
R4,762
Discovery Miles 47 620
Handling Priority Inversion in…
Udai Shanker, Sarvesh Pandey
Hardcover
R7,029
Discovery Miles 70 290
|