![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Combinatorics & graph theory
The new 6th edition of Applied Combinatorics builds on the previous editions with more in depth analysis of computer systems in order to help develop proficiency in basic discrete math problem solving. As one of the most widely used book in combinatorial problems, this edition explains how to reason and model combinatorically while stressing the systematic analysis of different possibilities, exploration of the logical structure of a problem, and ingenuity. Although important uses of combinatorics in computer science, operations research, and finite probability are mentioned, these applications are often used solely for motivation. Numerical examples involving the same concepts use more interesting settings such as poker probabilities or logical games. This book is designed for use by students with a wide range of ability and maturity (sophomores through beginning graduate students). The stronger the students, the harder the exercises that can be assigned. The book can be used for one-quarter, two-quarter, or one-semester course depending on how much material is used.
* What is the essence of the similarity between linearly
independent sets of columns of a matrix and forests in a graph?
A variety of different social, natural and technological systems can be described by the same mathematical framework. This holds from Internet to the Food Webs and to the connections between different company boards given by common directors. In all these situations a graph of the elements and their connections displays a universal feature of some few elements with many connections and many with few. This book reports the experimental evidence of these Scale-free networks'' and provides to students and researchers a corpus of theoretical results and algorithms to analyse and understand these features. The contents of this book and their exposition makes it a clear textbook for the beginners and a reference book for the experts.
This book is a unique introduction to graph theory, written by one of its founding fathers. It is not intended as a comprehensive treatise, but rather as an account of those parts of the theory that have been of special interest to the author. Professor Tutte details his experiences in the area, and provides a fascinating insight into the processes leading to his proofs.
While the significance of networks in various human behavior and activities has a history as long as human's existence, network awareness is a recent scientific phenomenon. The neologism network science is just one or two decades old. Nevertheless, with this limited time, network thinking has substantially reshaped the recent development in economics, and almost all solutions to real-world problems involve the network element. This book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The authors begin with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling's segregation model and Axelrod's spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The text also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. It reviews a number of pioneering and representative models in this family. Upon the given foundation, the second part reviews three primary forms of network dynamics, such as diffusions, cascades, and influences. These primary dynamics are further extended and enriched by practical networks in goods-and-service markets, labor markets, and international trade. At the end, the book considers two challenging issues using agent-based models of networks: network risks and economic growth.
Professor Dominic Welsh has made significant contributions to the fields of combinatorics and discrete probability, including matroids, complexity, and percolation, and has taught, influenced and inspired generations of students and researchers in mathematics. This volume summarizes and reviews the consistent themes from his work through a series of articles written by renowned experts. These articles contain original research work, set in a broader context by the inclusion of review material. As a reference text in its own right, this book will be valuable to academic researchers, research students, and others seeking an introduction to the relevant contemporary aspects of these fields.
In the world of mathematics and computer science, technological advancements are constantly being researched and applied to ongoing issues. Setbacks in social networking, engineering, and automation are themes that affect everyday life, and researchers have been looking for new techniques in which to solve these challenges. Graph theory is a widely studied topic that is now being applied to real-life problems. Advanced Applications of Graph Theory in Modern Society is an essential reference source that discusses recent developments on graph theory, as well as its representation in social networks, artificial neural networks, and many complex networks. The book aims to study results that are useful in the fields of robotics and machine learning and will examine different engineering issues that are closely related to fuzzy graph theory. Featuring research on topics such as artificial neural systems and robotics, this book is ideally designed for mathematicians, research scholars, practitioners, professionals, engineers, and students seeking an innovative overview of graphic theory.
This book surveys the mathematical and computational properties of finite sets of points in the plane, covering recent breakthroughs on important problems in discrete geometry, and listing many open problems. It unifies these mathematical and computational views using forbidden configurations, which are patterns that cannot appear in sets with a given property, and explores the implications of this unified view. Written with minimal prerequisites and featuring plenty of figures, this engaging book will be of interest to undergraduate students and researchers in mathematics and computer science. Most topics are introduced with a related puzzle or brain-teaser. The topics range from abstract issues of collinearity, convexity, and general position to more applied areas including robust statistical estimation and network visualization, with connections to related areas of mathematics including number theory, graph theory, and the theory of permutation patterns. Pseudocode is included for many algorithms that compute properties of point sets.
Fixed Point Theory and Graph Theory provides an intersection between the theories of fixed point theorems that give the conditions under which maps (single or multivalued) have solutions and graph theory which uses mathematical structures to illustrate the relationship between ordered pairs of objects in terms of their vertices and directed edges. This edited reference work is perhaps the first to provide a link between the two theories, describing not only their foundational aspects, but also the most recent advances and the fascinating intersection of the domains. The authors provide solution methods for fixed points in different settings, with two chapters devoted to the solutions method for critically important non-linear problems in engineering, namely, variational inequalities, fixed point, split feasibility, and hierarchical variational inequality problems. The last two chapters are devoted to integrating fixed point theory in spaces with the graph and the use of retractions in the fixed point theory for ordered sets.
MESH ist ein mathematisches Video ber vielfl chige Netzwerke und ihre Rolle in der Geometrie, der Numerik und der Computergraphik. Der unter Anwendung der neuesten Technologie vollst ndig computergenierte Film spannt einen Bogen von der antiken griechischen Mathematik zum Gebiet der heutigen geometrischen Modellierung. MESH hat zahlreiche wissenschaftliche Preise weltweit gewonnen. Die Autoren sind Konrad Polthier, ein Professor der Mathematik, und Beau Janzen, ein professioneller Filmdirektor. Der Film ist ein ausgezeichnetes Lehrmittel f r Kurse in Geometrie, Visualisierung, wissenschaftlichem Rechnen und geometrischer Modellierung an Universit ten, Zentren f r wissenschaftliches Rechnen, kann jedoch auch an Schulen genutzt werden.
A magician appears able to banish chaos at will: a deck of cards arranged in order is shuffled--apparently randomly--by a member of the audience. Then, hey presto! The deck is suddenly put back in its original order! Magic tricks like this are easy to perform and have an interesting mathematical foundation. In this rich, colorfully illustrated volume, Ehrhard Behrends presents around 30 card tricks and number games that are easy to learn, with no prior knowledge required. This is math as you've never experienced it before: entertaining and fun!
Simulating for a crisis is far more than creating a simulation of a crisis situation. In order for a simulation to be useful during a crisis, it should be created within the space of a few days to allow decision makers to use it as quickly as possible. Furthermore, during a crisis the aim is not to optimize just one factor, but to balance various, interdependent aspects of life. In the COVID-19 crisis, decisions had to be made concerning e.g. whether to close schools and restaurants, and the (economic) consequences of a 3 or 4-week lock-down had to be considered. As such, rather than one simulation focusing on a very limited aspect, a framework allowing the simulation of several different scenarios focusing on different aspects of the crisis was required. Moreover, the results of the simulations needed to be easily understandable and explainable: if a simulation indicates that closing schools has no effect, this can only be used if the decision makers can explain why this is the case. This book describes how a simulation framework was created for the COVID-19 crisis, and demonstrates how it was used to simulate a wide range of scenarios that were relevant for decision makers at the time. It also discusses the usefulness of the approach, and explains the decisions that had to be made along the way as well as the trade-offs. Lastly, the book examines the lessons learned and the directions for the further development of social simulation frameworks to make them better suited to crisis situations, and to foster a more resilient society.
The Workshop for Women in Graph Theory and Applications was held at the Institute for Mathematics and Its Applications (University of Minnesota, Minneapolis) on August 19-23, 2019. During this five-day workshop, 42 participants performed collaborative research, in six teams, each focused on open problems in different areas of graph theory and its applications. The research work of each team was led by two experts in the corresponding area, who prior to the workshop, carefully selected relevant and meaningful open problems that would yield high-quality research and results of strong impact. As a result, all six teams have made significant contributions to several open problems in their respective areas. The workshop led to the creation of the Women in Graph Theory and Applications Research Collaboration Network, which provided the framework to continue collaborating and to produce this volume. This book contains six chapters, each of them on one of the different areas of research at the Workshop for Women in Graph Theory and Applications, and written by participants of each team.
This book is the essential companion to Counting (2nd Edition) (World Scientific, 2013), an introduction to combinatorics for secondary to undergraduate students. The book gives solutions to the exercises in Counting (2nd Edition). There is often more than one method to solve a particular problem and the authors have included alternative solutions whenever they are of interest. The rigorous and clear solutions will aid the reader in further understanding the concepts and applications in Counting (2nd Edition). An introductory section on problem solving as described by George P lya will be useful in helping the lay person understand how mathematicians think and solve problems.
This book in its Second Edition is a useful, attractive introduction to basic counting techniques for upper secondary to undergraduate students, as well as teachers. Younger students and lay people who appreciate mathematics, not to mention avid puzzle solvers, will also find the book interesting. The various problems and applications here are good for building up proficiency in counting. They are also useful for honing basic skills and techniques in general problem solving. Many of the problems avoid routine and the diligent reader will often discover more than one way of solving a particular problem, which is indeed an important awareness in problem solving. The book thus helps to give students an early start to learning problem-solving heuristics and thinking skills.New chapters originally from a supplementary book have been added in this edition to substantially increase the coverage of counting techniques. The new chapters include the Principle of Inclusion and Exclusion, the Pigeonhole Principle, Recurrence Relations, the Stirling Numbers and the Catalan Numbers. A number of new problems have also been added to this edition.
Magic squares are among the more popular mathematical recreations. Over the last 50 years, many generalizations of "magic" ideas have been applied to graphs. Recently there has been a resurgence of interest in "magic labelings" due to a number of results that have applications to the problem of decomposing graphs into trees. Key features of this second edition include: . a new chapter on magic labeling of directed graphs . applications of theorems from graph theory and interesting counting arguments . new research problems and exercises covering a range of difficulties . a fully updated bibliography and index This concise, self-contained exposition is unique in its focus on the theory of magic graphs/labelings. It may serve as a graduate or advanced undergraduate text for courses in mathematics or computer science, and as reference for the researcher."
This book presents original peer-reviewed contributions from the London Mathematical Society (LMS) Midlands Regional Meeting and Workshop on 'Galois Covers, Grothendieck-Teichmuller Theory and Dessinsd'Enfants', which took place at the University of Leicester, UK, from 4 to 7 June, 2018. Within the theme of the workshop, the collected articles cover a broad range of topics and explore exciting new links between algebraic geometry, representation theory, group theory, number theory and algebraic topology. The book combines research and overview articles by prominent international researchers and provides a valuable resource for researchers and students alike.
This book focuses on the latest developments in behaviormetrics and data science, covering a wide range of topics in data analysis and related areas of data science, including analysis of complex data, analysis of qualitative data, methods for high-dimensional data, dimensionality reduction, visualization of such data, multivariate statistical methods, analysis of asymmetric relational data, and various applications to real data. In addition to theoretical and methodological results, it also shows how to apply the proposed methods to a variety of problems, for example in consumer behavior, decision making, marketing data, and social network structures. Moreover, it discuses methodological aspects and applications in a wide range of areas, such as behaviormetrics; behavioral science; psychology; and marketing, management and social sciences. Combining methodological advances with real-world applications collected from a variety of research fields, the book is a valuable resource for researchers and practitioners, as well as for applied statisticians and data analysts.
Updated to reflect current research, Algebraic Number Theory and Fermat's Last Theorem, Fourth Edition introduces fundamental ideas of algebraic numbers and explores one of the most intriguing stories in the history of mathematics-the quest for a proof of Fermat's Last Theorem. The authors use this celebrated theorem to motivate a general study of the theory of algebraic numbers from a relatively concrete point of view. Students will see how Wiles's proof of Fermat's Last Theorem opened many new areas for future work. New to the Fourth Edition Provides up-to-date information on unique prime factorization for real quadratic number fields, especially Harper's proof that Z( 14) is Euclidean Presents an important new result: Mihailescu's proof of the Catalan conjecture of 1844 Revises and expands one chapter into two, covering classical ideas about modular functions and highlighting the new ideas of Frey, Wiles, and others that led to the long-sought proof of Fermat's Last Theorem Improves and updates the index, figures, bibliography, further reading list, and historical remarks Written by preeminent mathematicians Ian Stewart and David Tall, this text continues to teach students how to extend properties of natural numbers to more general number structures, including algebraic number fields and their rings of algebraic integers. It also explains how basic notions from the theory of algebraic numbers can be used to solve problems in number theory.
Secret sharing schemes form one of the most important topic in Cryptography. These protocols are used in many areas, applied mathematics, computer science, electrical engineering. A secret is divided into several pieces called shares. Each share is given to a user of the system. Each user has no information about the secret, but the secret can be retrieved by certain authorized coalition of users.This book is devoted to such schemes inspired by Coding Theory. The classical schemes of Shamir, Blakley, Massey are recalled. Survey is made of research in Combinatorial Coding Theory they triggered, mostly self-dual codes, and minimal codes. Applications to engineering like image processing, and key management of MANETs are highlighted.
This volume highlights the mathematical research presented at the 2019 Association for Women in Mathematics (AWM) Research Symposium held at Rice University, April 6-7, 2019. The symposium showcased research from women across the mathematical sciences working in academia, government, and industry, as well as featured women across the career spectrum: undergraduates, graduate students, postdocs, and professionals. The book is divided into eight parts, opening with a plenary talk and followed by a combination of research paper contributions and survey papers in the different areas of mathematics represented at the symposium: algebraic combinatorics and graph theory algebraic biology commutative algebra analysis, probability, and PDEs topology applied mathematics mathematics education
An Introduction to Grids, Graphs, and Networks aims to provide a concise introduction to graphs and networks at a level that is accessible to scientists, engineers, and students. In a practical approach, the book presents only the necessary theoretical concepts from mathematics and considers a variety of physical and conceptual configurations as prototypes or examples. The subject is timely, as the performance of networks is recognized as an important topic in the study of complex systems with applications in energy, material, and information grid transport (epitomized by the internet). The book is written from the practical perspective of an engineer with some background in numerical computation and applied mathematics, and the text is accompanied by numerous schematic illustrations throughout. In the book, Constantine Pozrikidis provides an original synthesis of concepts and terms from three distinct fields-mathematics, physics, and engineering-and a formal application of powerful conceptual apparatuses, like lattice Green's function, to areas where they have rarely been used. It is novel in that it grids, graphs, and networks are connected using concepts from partial differential equations. This original material has profound implications in the study of networks, and will serve as a resource to readers ranging from undergraduates to experienced scientists.
The spectral geometry of infinite graphs deals with three major themes and their interplay: the spectral theory of the Laplacian, the geometry of the underlying graph, and the heat flow with its probabilistic aspects. In this book, all three themes are brought together coherently under the perspective of Dirichlet forms, providing a powerful and unified approach. The book gives a complete account of key topics of infinite graphs, such as essential self-adjointness, Markov uniqueness, spectral estimates, recurrence, and stochastic completeness. A major feature of the book is the use of intrinsic metrics to capture the geometry of graphs. As for manifolds, Dirichlet forms in the graph setting offer a structural understanding of the interaction between spectral theory, geometry and probability. For graphs, however, the presentation is much more accessible and inviting thanks to the discreteness of the underlying space, laying bare the main concepts while preserving the deep insights of the manifold case. Graphs and Discrete Dirichlet Spaces offers a comprehensive treatment of the spectral geometry of graphs, from the very basics to deep and thorough explorations of advanced topics. With modest prerequisites, the book can serve as a basis for a number of topics courses, starting at the undergraduate level. |
![]() ![]() You may like...
|