![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Combinatorics & graph theory
The new 6th edition of Applied Combinatorics builds on the previous editions with more in depth analysis of computer systems in order to help develop proficiency in basic discrete math problem solving. As one of the most widely used book in combinatorial problems, this edition explains how to reason and model combinatorically while stressing the systematic analysis of different possibilities, exploration of the logical structure of a problem, and ingenuity. Although important uses of combinatorics in computer science, operations research, and finite probability are mentioned, these applications are often used solely for motivation. Numerical examples involving the same concepts use more interesting settings such as poker probabilities or logical games. This book is designed for use by students with a wide range of ability and maturity (sophomores through beginning graduate students). The stronger the students, the harder the exercises that can be assigned. The book can be used for one-quarter, two-quarter, or one-semester course depending on how much material is used.
In the world of mathematics and computer science, technological advancements are constantly being researched and applied to ongoing issues. Setbacks in social networking, engineering, and automation are themes that affect everyday life, and researchers have been looking for new techniques in which to solve these challenges. Graph theory is a widely studied topic that is now being applied to real-life problems. Advanced Applications of Graph Theory in Modern Society is an essential reference source that discusses recent developments on graph theory, as well as its representation in social networks, artificial neural networks, and many complex networks. The book aims to study results that are useful in the fields of robotics and machine learning and will examine different engineering issues that are closely related to fuzzy graph theory. Featuring research on topics such as artificial neural systems and robotics, this book is ideally designed for mathematicians, research scholars, practitioners, professionals, engineers, and students seeking an innovative overview of graphic theory.
MESH ist ein mathematisches Video ber vielfl chige Netzwerke und ihre Rolle in der Geometrie, der Numerik und der Computergraphik. Der unter Anwendung der neuesten Technologie vollst ndig computergenierte Film spannt einen Bogen von der antiken griechischen Mathematik zum Gebiet der heutigen geometrischen Modellierung. MESH hat zahlreiche wissenschaftliche Preise weltweit gewonnen. Die Autoren sind Konrad Polthier, ein Professor der Mathematik, und Beau Janzen, ein professioneller Filmdirektor. Der Film ist ein ausgezeichnetes Lehrmittel f r Kurse in Geometrie, Visualisierung, wissenschaftlichem Rechnen und geometrischer Modellierung an Universit ten, Zentren f r wissenschaftliches Rechnen, kann jedoch auch an Schulen genutzt werden.
A magician appears able to banish chaos at will: a deck of cards arranged in order is shuffled--apparently randomly--by a member of the audience. Then, hey presto! The deck is suddenly put back in its original order! Magic tricks like this are easy to perform and have an interesting mathematical foundation. In this rich, colorfully illustrated volume, Ehrhard Behrends presents around 30 card tricks and number games that are easy to learn, with no prior knowledge required. This is math as you've never experienced it before: entertaining and fun!
This book is the essential companion to Counting (2nd Edition) (World Scientific, 2013), an introduction to combinatorics for secondary to undergraduate students. The book gives solutions to the exercises in Counting (2nd Edition). There is often more than one method to solve a particular problem and the authors have included alternative solutions whenever they are of interest. The rigorous and clear solutions will aid the reader in further understanding the concepts and applications in Counting (2nd Edition). An introductory section on problem solving as described by George P lya will be useful in helping the lay person understand how mathematicians think and solve problems.
This book in its Second Edition is a useful, attractive introduction to basic counting techniques for upper secondary to undergraduate students, as well as teachers. Younger students and lay people who appreciate mathematics, not to mention avid puzzle solvers, will also find the book interesting. The various problems and applications here are good for building up proficiency in counting. They are also useful for honing basic skills and techniques in general problem solving. Many of the problems avoid routine and the diligent reader will often discover more than one way of solving a particular problem, which is indeed an important awareness in problem solving. The book thus helps to give students an early start to learning problem-solving heuristics and thinking skills.New chapters originally from a supplementary book have been added in this edition to substantially increase the coverage of counting techniques. The new chapters include the Principle of Inclusion and Exclusion, the Pigeonhole Principle, Recurrence Relations, the Stirling Numbers and the Catalan Numbers. A number of new problems have also been added to this edition.
Updated to reflect current research, Algebraic Number Theory and Fermat's Last Theorem, Fourth Edition introduces fundamental ideas of algebraic numbers and explores one of the most intriguing stories in the history of mathematics-the quest for a proof of Fermat's Last Theorem. The authors use this celebrated theorem to motivate a general study of the theory of algebraic numbers from a relatively concrete point of view. Students will see how Wiles's proof of Fermat's Last Theorem opened many new areas for future work. New to the Fourth Edition Provides up-to-date information on unique prime factorization for real quadratic number fields, especially Harper's proof that Z( 14) is Euclidean Presents an important new result: Mihailescu's proof of the Catalan conjecture of 1844 Revises and expands one chapter into two, covering classical ideas about modular functions and highlighting the new ideas of Frey, Wiles, and others that led to the long-sought proof of Fermat's Last Theorem Improves and updates the index, figures, bibliography, further reading list, and historical remarks Written by preeminent mathematicians Ian Stewart and David Tall, this text continues to teach students how to extend properties of natural numbers to more general number structures, including algebraic number fields and their rings of algebraic integers. It also explains how basic notions from the theory of algebraic numbers can be used to solve problems in number theory.
Secret sharing schemes form one of the most important topic in Cryptography. These protocols are used in many areas, applied mathematics, computer science, electrical engineering. A secret is divided into several pieces called shares. Each share is given to a user of the system. Each user has no information about the secret, but the secret can be retrieved by certain authorized coalition of users.This book is devoted to such schemes inspired by Coding Theory. The classical schemes of Shamir, Blakley, Massey are recalled. Survey is made of research in Combinatorial Coding Theory they triggered, mostly self-dual codes, and minimal codes. Applications to engineering like image processing, and key management of MANETs are highlighted.
This two-volume set presents combinatorial functional equations using an algebraic approach, and illustrates their applications in combinatorial maps, graphs, networks, etc. The first volume mainly presents basic concepts and the theoretical background. Differential (ordinary and partial) equations and relevant topics are discussed in detail.
Algebraic combinatorics is the study of combinatorial objects as an extension of the study of finite permutation groups, or, in other words, group theory without groups. In the spirit of Delsarte's theory, this book studies combinatorial objects such as graphs, codes, designs, etc. in the general framework of association schemes, providing a comprehensive overview of the theory as well as pointing out to extensions.
This book provides an introduction to the inverse eigenvalue problem for graphs (IEP-$G$) and the related area of zero forcing, propagation, and throttling. The IEP-$G$ grew from the intersection of linear algebra and combinatorics and has given rise to both a rich set of deep problems in that area as well as a breadth of ""ancillary'' problems in related areas. The IEP-$G$ asks a fundamental mathematical question expressed in terms of linear algebra and graph theory, but the significance of such questions goes beyond these two areas, as particular instances of the IEP-$G$ also appear as major research problems in other fields of mathematics, sciences and engineering. One approach to the IEP-$G$ is through rank minimization, a relevant problem in itself and with a large number of applications. During the past 10 years, important developments on the rank minimization problem, particularly in relation to zero forcing, have led to significant advances in the IEP-$G$. The monograph serves as an entry point and valuable resource that will stimulate future developments in this active and mathematically diverse research area.
Over a career that spanned 60 years, Ronald L. Graham (known to all as Ron) made significant contributions to the fields of discrete mathematics, number theory, Ramsey theory, computational geometry, juggling and magical mathematics, and many more. Ron also was a mentor to generations of mathematicians, he gave countless talks and helped bring mathematics to a wider audience, and he held signifi cant leadership roles in the mathematical community. This volume is dedicated to the life and memory of Ron Graham, and includes 20-articles by leading scientists across a broad range of subjects that refl ect some of the many areas in which Ron worked.
Elwyn Berlekamp, John Conway, and Richard Guy wrote 'Winning Ways for your Mathematical Plays' and turned a recreational mathematics topic into a full mathematical fi eld. They combined set theory, combinatorics, codes, algorithms, and a smattering of other fi elds, leavened with a liberal dose of humor and wit. Their legacy is a lively fi eld of study that still produces many surprises. Despite being experts in other areas of mathematics, in the 50 years since its publication, they also mentored, talked, and played games, giving their time, expertise, and guidance to several generations of mathematicians. This volume is dedicated to Elwyn Berlekamp, John Conway, and Richard Guy. It includes 20 contributions from colleagues that refl ect on their work in combinatorial game theory.
A combinatorial method is developed in this book to explore the mysteries of chaos, which has became a topic of science since 1975. Using tools from theoretical computer science, formal languages and automata, the complexity of symbolic behaviors of dynamical systems is classified and analysed thoroughly. This book is mainly devoted to explanation of this method and apply it to one-dimensional dynamical systems, including the circle and interval maps, which are typical in exhibiting complex behavior through simple iterated calculations. The knowledge for reading it is self-contained in the book.
In 1974 the editors of the present volume published a well-received
book entitled Latin Squares and their Applications''. It included a
list of 73 unsolved problems of which about 20 have been completely
solved in the intervening period and about 10 more have been
partially solved.
Threshold graphs have a beautiful structure and possess many important mathematical properties. They have applications in many areas including computer science and psychology. Over the last 20 years the interest in threshold graphs has increased significantly, and the subject continues to attract much attention. The book contains many open problems and research ideas which will appeal to graduate students and researchers interested in graph theory. But above all "Threshold Graphs and Related Topics" provides a valuable source of information for all those working in this field.
The study of network theory is a highly interdisciplinary field, which has emerged as a major topic of interest in various disciplines ranging from physics and mathematics, to biology and sociology. This book promotes the diverse nature of the study of complex networks by balancing the needs of students from very different backgrounds. It references the most commonly used concepts in network theory, provides examples of their applications in solving practical problems, and clear indications on how to analyse their results. In the first part of the book, students and researchers will discover the quantitative and analytical tools necessary to work with complex networks, including the most basic concepts in network and graph theory, linear and matrix algebra, as well as the physical concepts most frequently used for studying networks. They will also find instruction on some key skills such as how to proof analytic results and how to manipulate empirical network data. The bulk of the text is focused on instructing readers on the most useful tools for modern practitioners of network theory. These include degree distributions, random networks, network fragments, centrality measures, clusters and communities, communicability, and local and global properties of networks. The combination of theory, example and method that are presented in this text, should ready the student to conduct their own analysis of networks with confidence and allow teachers to select appropriate examples and problems to teach this subject in the classroom.
This book studies algebraic representations of graphs in order to investigate combinatorial structures via local symmetries. Topological, combinatorial and algebraic classifications are distinguished by invariants of polynomial type and algorithms are designed to determine all such classifications with complexity analysis. Being a summary of the author's original work on graph embeddings, this book is an essential reference for researchers in graph theory. Contents Abstract Graphs Abstract Maps Duality Orientability Orientable Maps Nonorientable Maps Isomorphisms of Maps Asymmetrization Asymmetrized Petal Bundles Asymmetrized Maps Maps within Symmetry Genus Polynomials Census with Partitions Equations with Partitions Upper Maps of a Graph Genera of a Graph Isogemial Graphs Surface Embeddability
Pattern Recognition on Oriented Matroids covers a range of innovative problems in combinatorics, poset and graph theories, optimization, and number theory that constitute a far-reaching extension of the arsenal of committee methods in pattern recognition. The groundwork for the modern committee theory was laid in the mid-1960s, when it was shown that the familiar notion of solution to a feasible system of linear inequalities has ingenious analogues which can serve as collective solutions to infeasible systems. A hierarchy of dialects in the language of mathematics, for instance, open cones in the context of linear inequality systems, regions of hyperplane arrangements, and maximal covectors (or topes) of oriented matroids, provides an excellent opportunity to take a fresh look at the infeasible system of homogeneous strict linear inequalities - the standard working model for the contradictory two-class pattern recognition problem in its geometric setting. The universal language of oriented matroid theory considerably simplifies a structural and enumerative analysis of applied aspects of the infeasibility phenomenon. The present book is devoted to several selected topics in the emerging theory of pattern recognition on oriented matroids: the questions of existence and applicability of matroidal generalizations of committee decision rules and related graph-theoretic constructions to oriented matroids with very weak restrictions on their structural properties; a study (in which, in particular, interesting subsequences of the Farey sequence appear naturally) of the hierarchy of the corresponding tope committees; a description of the three-tope committees that are the most attractive approximation to the notion of solution to an infeasible system of linear constraints; an application of convexity in oriented matroids as well as blocker constructions in combinatorial optimization and in poset theory to enumerative problems on tope committees; an attempt to clarify how elementary changes (one-element reorientations) in an oriented matroid affect the family of its tope committees; a discrete Fourier analysis of the important family of critical tope committees through rank and distance relations in the tope poset and the tope graph; the characterization of a key combinatorial role played by the symmetric cycles in hypercube graphs. Contents Oriented Matroids, the Pattern Recognition Problem, and Tope Committees Boolean Intervals Dehn-Sommerville Type Relations Farey Subsequences Blocking Sets of Set Families, and Absolute Blocking Constructions in Posets Committees of Set Families, and Relative Blocking Constructions in Posets Layers of Tope Committees Three-Tope Committees Halfspaces, Convex Sets, and Tope Committees Tope Committees and Reorientations of Oriented Matroids Topes and Critical Committees Critical Committees and Distance Signals Symmetric Cycles in the Hypercube Graphs
This book introduces polyhedra as a tool for graph theory and discusses their properties and applications in solving the Gauss crossing problem. The discussion is extended to embeddings on manifolds, particularly to surfaces of genus zero and non-zero via the joint tree model, along with solution algorithms. Given its rigorous approach, this book would be of interest to researchers in graph theory and discrete mathematics.
Three major branches of number theory are included in the volume: namely analytic number theory, algebraic number theory, and transcendental number theory. Original research is presented that discusses modern techniques and survey papers from selected academic scholars.
This two-volume set presents combinatorial functional equations using an algebraic approach, and illustrates their applications in combinatorial maps, graphs, networks, etc. The second volume mainly presents several kinds of meson functional equations which are divided into three types: outer, inner and surface. It is suited for a wide readership, including pure and applied mathematicians, and also computer scientists.
|
![]() ![]() You may like...
The Whole Story: Painting more than just…
Christina Hart Davies
Paperback
|