Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Combinatorics & graph theory
This book is a collection of articles studying various Steiner tree prob lems with applications in industries, such as the design of electronic cir cuits, computer networking, telecommunication, and perfect phylogeny. The Steiner tree problem was initiated in the Euclidean plane. Given a set of points in the Euclidean plane, the shortest network interconnect ing the points in the set is called the Steiner minimum tree. The Steiner minimum tree may contain some vertices which are not the given points. Those vertices are called Steiner points while the given points are called terminals. The shortest network for three terminals was first studied by Fermat (1601-1665). Fermat proposed the problem of finding a point to minimize the total distance from it to three terminals in the Euclidean plane. The direct generalization is to find a point to minimize the total distance from it to n terminals, which is still called the Fermat problem today. The Steiner minimum tree problem is an indirect generalization. Schreiber in 1986 found that this generalization (i.e., the Steiner mini mum tree) was first proposed by Gauss."
This is a new edited volume on shape analysis presenting results in shape modeling and computational geometry from the 2013 Association for Women in Mathematics (AWM) symposium held at UCLA's Institute for Pure and Applied Mathematics (IPAM). In-depth discussion of shape modeling techniques is supplemented by full-color illustrations demonstrating the results of workshop-developed shape modeling algorithms. It will be the first volume in Springer's AWM series.
This book is a concise, self-contained, up-to-date introduction to extremal combinatorics for nonspecialists. There is a strong emphasis on theorems with particularly elegant and informative proofs, they may be called gems of the theory. The author presents a wide spectrum of the most powerful combinatorial tools together with impressive applications in computer science: methods of extremal set theory, the linear algebra method, the probabilistic method, and fragments of Ramsey theory. No special knowledge in combinatorics or computer science is assumed - the text is self-contained and the proofs can be enjoyed by undergraduate students in mathematics and computer science. Over 300 exercises of varying difficulty, and hints to their solution, complete the text. This second edition has been extended with substantial new material, and has been revised and updated throughout. It offers three new chapters on expander graphs and eigenvalues, the polynomial method and error-correcting codes. Most of the remaining chapters also include new material, such as the Kruskal-Katona theorem on shadows, the Lovasz-Stein theorem on coverings, large cliques in dense graphs without induced 4-cycles, a new lower bounds argument for monotone formulas, Dvir's solution of the finite field Kakeya conjecture, Moser's algorithmic version of the Lovasz Local Lemma, Schoning's algorithm for 3-SAT, the Szemeredi-Trotter theorem on the number of point-line incidences, surprising applications of expander graphs in extremal number theory, and some other new results."
Matroid theory was invented in the middle of the 1930s by two mathematicians independently, namely, Hassler Whitney in the USA and Takeo Nakasawa in Japan. Whitney became famous, but Nakasawa remained anonymous until two decades ago. He left only four papers to the mathematical community, all of them written in the middle of the 1930s. It was a bad time to have lived in a country that had become as eccentric as possible. Just as Nazism became more and more flamboyant in Europe in the 1930s, Japan became more and more esoteric and fanatical in the same time period. This book explains the little that is known about Nakasawa s personal life in a Japan that had, among other failures, lost control over its military. This book contains his four papers in German and their English translations as well as some extended commentary on the history of Japan during those years. The book also contains 14 photos of him or his family. Although the veil of mystery surrounding Nakasawa s life has only been partially lifted, the work presented in this book speaks eloquently of a tragic loss to the mathematical community."
This book consists of contributions from experts, presenting a fruitful interplay between different approaches to discrete geometry. Most of the chapters were collected at the conference "Geometry and Symmetry" in Veszprem, Hungary from 29 June to 3 July 2015. The conference was dedicated to Karoly Bezdek and Egon Schulte on the occasion of their 60th birthdays, acknowledging their highly regarded contributions in these fields. While the classical problems of discrete geometry have a strong connection to geometric analysis, coding theory, symmetry groups, and number theory, their connection to combinatorics and optimization has become of particular importance. The last decades have seen a revival of interest in discrete geometric structures and their symmetry. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory and geometry, combinatorial group theory, and hyperbolic geometry and topology. This book contains papers on new developments in these areas, including convex and abstract polytopes and their recent generalizations, tiling and packing, zonotopes, isoperimetric inequalities, and on the geometric and combinatorial aspects of linear optimization. The book is a valuable resource for researchers, both junior and senior, in the field of discrete geometry, combinatorics, or discrete optimization. Graduate students find state-of-the-art surveys and an open problem collection.
Arc Routing: Theory, Solutions and Applications is about arc traversal and the wide variety of arc routing problems, which has had its foundations in the modern graph theory work of Leonhard Euler. Arc routing methods and computation has become a fundamental optimization concept in operations research and has numerous applications in transportation, telecommunications, manufacturing, the Internet, and many other areas of modern life. The book draws from a variety of sources including the traveling salesman problem (TSP) and graph theory, which are used and studied by operations research, engineers, computer scientists, and mathematicians. In the last ten years or so, there has been extensive coverage of arc routing problems in the research literature, especially from a graph theory perspective; however, the field has not had the benefit of a uniform, systematic treatment. With this book, there is now a single volume that focuses on state-of-the-art exposition of arc routing problems, that explores its graph theoretical foundations, and that presents a number of solution methodologies in a variety of application settings. Moshe Dror has succeeded in working with an elite group of ARC routing scholars to develop the highest quality treatment of the current state-of-the-art in arc routing.
New and striking results obtained in recent years from an intensive study of asymptotic combinatorics have led to a new, higher level of understanding of related problems: the theory of integrable systems, the Riemann-Hilbert problem, asymptotic representation theory, spectra of random matrices, combinatorics of Young diagrams and permutations, and even some aspects of quantum field theory.
A transfinite graph or electrical network of the first rank is obtained conceptually by connecting conventionally infinite graphs and networks together at their infinite extremities. This process can be repeated to obtain a hierarchy of transfiniteness whose ranks increase through the countable ordinals. This idea, which is of recent origin, has enriched the theories of graphs and networks with radically new constructs and research problems. The book provides a more accessible introduction to the subject that, though sacrificing some generality, captures the essential ideas of transfiniteness for graphs and networks. Thus, for example, some results concerning discrete potentials and random walks on transfinite networks can now be presented more concisely. Conversely, the simplifications enable the development of many new results that were previously unavailable. Topics and features: *A simplified exposition provides an introduction to transfiniteness for graphs and networks.*Various results for conventional graphs are extended transfinitely. *Minty's powerful analysis of monotone electrical networks is also extended transfinitely.*Maximum principles for node voltages in linear transfinite networks are established. *A concise treatment of random walks on transfinite networks is developed. *Conventional theory is expanded with radically new constructs. Mathematicians, operations researchers and electrical engineers, in particular, graph theorists, electrical circuit theorists, and probabalists will find an accessible exposition of an advanced subject.
This book presents open optimization problems in graph theory and networks. Each chapter reflects developments in theory and applications based on Gregory Gutin's fundamental contributions to advanced methods and techniques in combinatorial optimization. Researchers, students, and engineers in computer science, big data, applied mathematics, operations research, algorithm design, artificial intelligence, software engineering, data analysis, industrial and systems engineering will benefit from the state-of-the-art results presented in modern graph theory and its applications to the design of efficient algorithms for optimization problems. Topics covered in this work include: * Algorithmic aspects of problems with disjoint cycles in graphs * Graphs where maximal cliques and stable sets intersect * The maximum independent set problem with special classes * A general technique for heuristic algorithms for optimization problems * The network design problem with cut constraints * Algorithms for computing the frustration index of a signed graph * A heuristic approach for studying the patrol problem on a graph * Minimum possible sum and product of the proper connection number * Structural and algorithmic results on branchings in digraphs * Improved upper bounds for Korkel--Ghosh benchmark SPLP instances
The subject of pattern analysis and recognition pervades many aspects of our daily lives, including user authentication in banking, object retrieval from databases in the consumer sector, and the omnipresent surveillance and security measures around sensitive areas. Shape analysis, a fundamental building block in many approaches to these applications, is also used in statistics, biomedical applications (Magnetic Resonance Imaging), and many other related disciplines. With contributions from some of the leading experts and pioneers in the field, this self-contained, unified volume is the first comprehensive treatment of theory, methods, and algorithms available in a single resource. Developments are discussed from a rapidly increasing number of research papers in diverse fields, including the mathematical and physical sciences, engineering, and medicine.
The Virasoro algebra is an infinite dimensional Lie algebra that plays an increasingly important role in mathematics and theoretical physics. This book describes some fundamental facts about the representation theory of the Virasoro algebra in a self-contained manner. Topics include the structure of Verma modules and Fock modules, the classification of (unitarizable) Harish-Chandra modules, tilting equivalence, and the rational vertex operator algebras associated to the so-called minimal series representations. Covering a wide range of material, this book has three appendices which provide background information required for some of the chapters. The authors organize fundamental results in a unified way and refine existing proofs. For instance in chapter three, a generalization of Jantzen filtration is reformulated in an algebraic manner, and geometric interpretation is provided. Statements, widely believed to be true, are collated, and results which are known but not verified are proven, such as the corrected structure theorem of Fock modules in chapter eight. This book will be of interest to a wide range of mathematicians and physicists from the level of graduate students to researchers.
Preliminary Text. Do not use. Sphere Packings is one of the most attractive and challenging subjects in mathematics. Almost 4 centuries ago, Kepler studied the densities of sphere packings and made his famous conjecture. In the course of centuries, many exciting results have been obtained, ingenious methods created, related challenging problems proposed, and many surprising connections with othe subjects found. Thus, though some of its original problems are still open, sphere packings has been developed into an important discipline. This book tries to give a full account of this fascinating subject, especially its local aspects, discrete aspects and its proof methods.
This monograph presents a unified exposition of latin squares and mutually orthogonal sets of latin squares based on groups. Its focus is on orthomorphisms and complete mappings of finite groups, while also offering a complete proof of the Hall-Paige conjecture. The use of latin squares in constructions of nets, affine planes, projective planes, and transversal designs also motivates this inquiry. The text begins by introducing fundamental concepts, like the tests for determining whether a latin square is based on a group, as well as orthomorphisms and complete mappings. From there, it describes the existence problem for complete mappings of groups, building up to the proof of the Hall-Paige conjecture. The third part presents a comprehensive study of orthomorphism graphs of groups, while the last part provides a discussion of Cartesian projective planes, related combinatorial structures, and a list of open problems. Expanding the author's 1992 monograph, Orthomorphism Graphs of Groups, this book is an essential reference tool for mathematics researchers or graduate students tackling latin square problems in combinatorics. Its presentation draws on a basic understanding of finite group theory, finite field theory, linear algebra, and elementary number theory-more advanced theories are introduced in the text as needed.
Providing a self-contained resource for upper undergraduate courses in combinatorics, this text emphasizes computation, problem solving, and proof technique. In particular, the book places special emphasis the Principle of Inclusion and Exclusion and the Multiplication Principle. To this end, exercise sets are included at the end of every section, ranging from simple computations (evaluate a formula for a given set of values) to more advanced proofs. The exercises are designed to test students' understanding of new material, while reinforcing a working mastery of the key concepts previously developed in the book. Intuitive descriptions for many abstract techniques are included. Students often struggle with certain topics, such as generating functions, and this intuitive approach to the problem is helpful in their understanding. When possible, the book introduces concepts using combinatorial methods (as opposed to induction or algebra) to prove identities. Students are also asked to prove identities using combinatorial methods as part of their exercises. These methods have several advantages over induction or algebra.
This volume contains selected refereed papers based on lectures presented at the "Integers Conference 2011", an international conference in combinatorial number theory that was held in Carrollton, Georgia, United States in October 2011. This was the fifth Integers Conference, held bi-annually since 2003. It featured plenary lectures presented by Ken Ono, Carla Savage, Laszlo Szekely, Frank Thorne, and Julia Wolf, along with sixty other research talks. This volume consists of ten refereed articles, which are expanded and revised versions of talks presented at the conference. They represent a broad range of topics in the areas of number theory and combinatorics including multiplicative number theory, additive number theory, game theory, Ramsey theory, enumerative combinatorics, elementary number theory, the theory of partitions, and integer sequences.
Orthogonal designs have proved fundamental to constructing code division multiple antenna systems for more efficient mobile communications. Starting with basic theory, this book develops the algebra and combinatorics to create new communications modes. Intended primarily for researchers, it is also useful for graduate students wanting to understand some of the current communications coding theories.
This book is concerned with the structure of linear semigroups, that is, subsemigroups of the multiplicative semigroup Mn(K) of n x n matrices over a field K (or, more generally, skew linear semigroups - if K is allowed to be a division ring) and its applications to certain problems on associative algebras, semigroups and linear representations. It is motivated by several recent developments in the area of linear semigroups and their applications. It summarizes the state of knowledge in this area, presenting the results for the first time in a unified form. The book's point of departure is a structure theorem, which allows the use of powerful techniques of linear groups. Certain aspects of a combinatorial nature, connections with the theory of linear representations and applications to various problems on associative algebras are also discussed.
Based on talks from the 2015 and 2016 Combinatorial and Additive Number Theory (CANT) workshops at the City University of New York, these proceedings offer 19 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003, the workshop series surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Sumsets, partitions, convex polytopes and discrete geometry, Ramsey theory, primality testing, and cryptography are among the topics featured in this volume. Each contribution is dedicated to a specific topic that reflects the latest results by experts in the field. Researchers and graduate students interested in the current progress in number theory will find this selection of articles relevant and compelling.
This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin's problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah's astonishing construction of a model with finitely many Ramsey ultrafilters. Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists and historical remarks at the end of each chapter, this book is suitable for self-study.
This book contains two contributions: "Combinatorial and Asymptotic Methods in Algebra" by V.A. Ufnarovskij is a survey of various combinatorial methods in infinite-dimensional algebras, widely interpreted to contain homological algebra and vigorously developing computer algebra, and narrowly interpreted as the study of algebraic objects defined by generators and their relations. The author shows how objects like words, graphs and automata provide valuable information in asymptotic studies. The main methods emply the notions of Grobner bases, generating functions, growth and those of homological algebra. Treated are also problems of relationships between different series, such as Hilbert, Poincare and Poincare-Betti series. Hyperbolic and quantum groups are also discussed. The reader does not need much of background material for he can find definitions and simple properties of the defined notions introduced along the way. "Non-Associative Structures" by E.N.Kuz'min and I.P.Shestakov surveys the modern state of the theory of non-associative structures that are nearly associative. Jordan, alternative, Malcev, and quasigroup algebras are discussed as well as applications of these structures in various areas of mathematics and primarily their relationship with the associative algebras. Quasigroups and loops are treated too. The survey is self-contained and complete with references to proofs in the literature. The book will be of great interest to graduate students and researchers in mathematics, computer science and theoretical physics."
In 2006 a special semester on Gr] obner bases and related methods was or- nized by RICAM and RISC, directed by Bruno Buchberger and Heinz Engl. The main focus of the semester were the development of the formal theory of Gr] obner bases (brie?y GB), the e?cient implementation of all algorithms related to this theory, and the promotion of recent and new applications of GB. The workshop D1 "Gr] obner bases in cryptography, coding theory and - gebraic combinatorics," Linz, May 1-6, 2006 (chairmen M. Klin, L. Perret, M. Sala) was one of the main ingredients of the semester. The last two days of this workshop, devoted to combinatorics, made it possible to bring together experts in algorithmic problems related to coherent con?gurations and as- ciation schemes with a community of people working in the area of GB. Each side was interested in understanding the computational problems and current algorithmicpossibilitiesoftheother, withaparticularobjectiveofintroducing the practical use of GB in algebraic combinatorics. Materials (mainly slides of lectures and posters) available from the site http: //www.ricam.oeaw.ac.at/specsem/srs/groeb/schedule D1.htmlprovidea helpful and vivid picture of the successful exchange of scienti?c information during the workshop D1. Asafollow-uptothespecialsemester,10volumesofproceedingsarebeing published by di?erent publishers. The current collection of papers re?ects diverse investigations in the area of algebraic combinatorics (with or without explicit use of GB), but with a de?nite emphasis on algorithmic approaches."
The book has many important features which make it suitable for both undergraduate and postgraduate students in various branches of engineering and general and applied sciences. The important topics interrelating Mathematics & Computer Science are also covered briefly. The book is useful to readers with a wide range of backgrounds including Mathematics, Computer Science/Computer Applications and Operational Research. While dealing with theorems and algorithms, emphasis is laid on constructions which consist of formal proofs, examples with applications. Uptill, there is scarcity of books in the open literature which cover all the things including most importantly various algorithms and applications with examples.
In the course of fuzzy technological development, fuzzy graph theory was identified quite early on for its importance in making things work. Two very important and useful concepts are those of granularity and of nonlinear ap proximations. The concept of granularity has evolved as a cornerstone of Lotfi A.Zadeh's theory of perception, while the concept of nonlinear approx imation is the driving force behind the success of the consumer electronics products manufacturing. It is fair to say fuzzy graph theory paved the way for engineers to build many rule-based expert systems. In the open literature, there are many papers written on the subject of fuzzy graph theory. However, there are relatively books available on the very same topic. Professors' Mordeson and Nair have made a real contribution in putting together a very com prehensive book on fuzzy graphs and fuzzy hypergraphs. In particular, the discussion on hypergraphs certainly is an innovative idea. For an experienced engineer who has spent a great deal of time in the lab oratory, it is usually a good idea to revisit the theory. Professors Mordeson and Nair have created such a volume which enables engineers and design ers to benefit from referencing in one place. In addition, this volume is a testament to the numerous contributions Professor John N. Mordeson and his associates have made to the mathematical studies in so many different topics of fuzzy mathematics."
This book proposes representations of multicast rate regions in wireless networks based on the mathematical concept of submodular functions, e.g., the submodular cut model and the polymatroid broadcast model. These models subsume and generalize the graph and hypergraph models. The submodular structure facilitates a dual decomposition approach to network utility maximization problems, which exploits the greedy algorithm for linear programming on submodular polyhedra. This approach yields computationally efficient characterizations of inner and outer bounds on the multicast capacity regions for various classes of wireless networks.
A combinatorial method is developed in this book to explore the mysteries of chaos, which has became a topic of science since 1975. Using tools from theoretical computer science, formal languages and automata, the complexity of symbolic behaviors of dynamical systems is classified and analysed thoroughly. This book is mainly devoted to explanation of this method and apply it to one-dimensional dynamical systems, including the circle and interval maps, which are typical in exhibiting complex behavior through simple iterated calculations. The knowledge for reading it is self-contained in the book. |
You may like...
Advances in Mathematical Sciences - AWM…
Bahar Acu, Donatella Danielli, …
Hardcover
R1,525
Discovery Miles 15 250
Advanced Studies in Behaviormetrics and…
Tadashi Imaizumi, Atsuho Nakayama, …
Hardcover
R3,594
Discovery Miles 35 940
Code Based Secret Sharing Schemes…
Patrick Sole, Selda Calkavur, …
Hardcover
R2,261
Discovery Miles 22 610
Galois Covers, Grothendieck-Teichmuller…
Frank Neumann, Sibylle Schroll
Hardcover
R4,264
Discovery Miles 42 640
Complex Networks & Their Applications IX…
Rosa M. Benito, Chantal Cherifi, …
Hardcover
R8,158
Discovery Miles 81 580
Active Lighting and Its Application for…
Katsushi Ikeuchi, Yasuyuki Matsushita, …
Hardcover
R4,592
Discovery Miles 45 920
Combinatorial Algebraic Geometry…
Gregory G. Smith, Bernd Sturmfels
Hardcover
R4,131
Discovery Miles 41 310
|