![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Combinatorics & graph theory
This textbook thoroughly outlines combinatorial algorithms for generation, enumeration, and search. Topics include backtracking and heuristic search methods applied to various combinatorial structures, such as: Combinations Permutations Graphs Designs Many classical areas are covered as well as new research topics not included in most existing texts, such as: Group algorithms Graph isomorphism Hill-climbing Heuristic search algorithms This work serves as an exceptional textbook for a modern course in combinatorial algorithms, providing a unified and focused collection of recent topics of interest in the area. The authors, synthesizing material that can only be found scattered through many different sources, introduce the most important combinatorial algorithmic techniques - thus creating an accessible, comprehensive text that students of mathematics, electrical engineering, and computer science can understand without needing a prior course on combinatorics.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Geometry of Derivation with Applications is the fifth work in a longstanding series of books on combinatorial geometry (Subplane Covered Nets, Foundations of Translation Planes, Handbook of Finite Translation Planes, and Combinatorics of Spreads and Parallelisms). Like its predecessors, this book will primarily deal with connections to the theory of derivable nets and translation planes in both the finite and infinite cases. Translation planes over non-commutative skewfields have not traditionally had a significant representation in incidence geometry, and derivable nets over skewfields have only been marginally understood. Both are deeply examined in this volume, while ideas of non-commutative algebra are also described in detail, with all the necessary background given a geometric treatment. The book builds upon over twenty years of work concerning combinatorial geometry, charted across four previous books and is suitable as a reference text for graduate students and researchers. It contains a variety of new ideas and generalizations of established work in finite affine geometry and is replete with examples and applications.
Model theory is the meta-mathematical study of the concept of mathematical truth. After Afred Tarski coined the term Theory of Models in the early 1950's, it rapidly became one of the central most active branches of mathematical logic. In the last few decades, ideas that originated within model theory have provided powerful tools to solve problems in a variety of areas of classical mathematics, including algebra, combinatorics, geometry, number theory, and Banach space theory and operator theory. The two volumes of Beyond First Order Model Theory present the reader with a fairly comprehensive vista, rich in width and depth, of some of the most active areas of contemporary research in model theory beyond the realm of the classical first-order viewpoint. Each chapter is intended to serve both as an introduction to a current direction in model theory and as a presentation of results that are not available elsewhere. All the articles are written so that they can be studied independently of one another. This second volume contains introductions to real-valued logic and applications, abstract elementary classes and applications, interconnections between model theory and function spaces, nonstucture theory, and model theory of second-order logic. Features A coherent introduction to current trends in model theory. Contains articles by some of the most influential logicians of the last hundred years. No other publication brings these distinguished authors together. Suitable as a reference for advanced undergraduate, postgraduates, and researchers. Material presented in the book (e.g, abstract elementary classes, first-order logics with dependent sorts, and applications of infinitary logics in set theory) is not easily accessible in the current literature. The various chapters in the book can be studied independently.
We live in a highly connected world with multiple self-interested agents interacting and myriad opportunities for conflict and cooperation. The goal of game theory is to understand these opportunities. This book presents a rigorous introduction to the mathematics of game theory without losing sight of the joy of the subject. This is done by focusing on theoretical highlights (e.g., at least six Nobel Prize winning results are developed from scratch) and by presenting exciting connections of game theory to other fields such as computer science (algorithmic game theory), economics (auctions and matching markets), social choice (voting theory), biology (signaling and evolutionary stability), and learning theory. Both classical topics, such as zero-sum games, and modern topics, such as sponsored search auctions, are covered. Along the way, beautiful mathematical tools used in game theory are introduced, including convexity, fixed-point theorems, and probabilistic arguments. The book is appropriate for a first course in game theory at either the undergraduate or graduate level, whether in mathematics, economics, computer science, engineering, or statistics. The importance of game-theoretic thinking transcends the academic setting-for every action we take, we must consider not only its direct effects, but also how it influences the incentives of others.
Combinatorics and finite fields are of great importance in modern applications such as in the analysis of algorithms, in information and communication theory, and in signal processing and coding theory. This book contains survey articles on topics such as difference sets, polynomials, and pseudorandomness.
In the past two decades, convex analysis and optimization have been developed in Hadamard spaces. This book represents a first attempt to give a systematic account on the subject. Hadamard spaces are complete geodesic spaces of nonpositive curvature. They include Hilbert spaces, Hadamard manifolds, Euclidean buildings and many other important spaces. While the role of Hadamard spaces in geometry and geometric group theory has been studied for a long time, first analytical results appeared as late as in the 1990s. Remarkably, it turns out that Hadamard spaces are appropriate for the theory of convex sets and convex functions outside of linear spaces. Since convexity underpins a large number of results in the geometry of Hadamard spaces, we believe that its systematic study is of substantial interest. Optimization methods then address various computational issues and provide us with approximation algorithms which may be useful in sciences and engineering. We present a detailed description of such an application to computational phylogenetics. The book is primarily aimed at both graduate students and researchers in analysis and optimization, but it is accessible to advanced undergraduate students as well.
This book is designed to be usable as a textbook for an undergraduate course or for an advanced graduate course in coding theory as well as a reference for researchers in discrete mathematics, engineering and theoretical computer science. This second edition has three parts: an elementary introduction to coding, theory and applications of codes, and algebraic curves. The latter part presents a brief introduction to the theory of algebraic curves and its most important applications to coding theory.
Covering the major topics of evolutionary game theory, Game-Theoretical Models in Biology, Second Edition presents both abstract and practical mathematical models of real biological situations. It discusses the static aspects of game theory in a mathematically rigorous way that is appealing to mathematicians. In addition, the authors explore many applications of game theory to biology, making the text useful to biologists as well. The book describes a wide range of topics in evolutionary games, including matrix games, replicator dynamics, the hawk-dove game, and the prisoner's dilemma. It covers the evolutionarily stable strategy, a key concept in biological games, and offers in-depth details of the mathematical models. Most chapters illustrate how to use Python to solve various games. Important biological phenomena, such as the sex ratio of so many species being close to a half, the evolution of cooperative behaviour, and the existence of adornments (for example, the peacock's tail), have been explained using ideas underpinned by game theoretical modelling. Suitable for readers studying and working at the interface of mathematics and the life sciences, this book shows how evolutionary game theory is used in the modelling of these diverse biological phenomena. In this thoroughly revised new edition, the authors have added three new chapters on the evolution of structured populations, biological signalling games, and a topical new chapter on evolutionary models of cancer. There are also new sections on games with time constraints that convert simple games to potentially complex nonlinear ones; new models on extortion strategies for the Iterated Prisoner's Dilemma and on social dilemmas; and on evolutionary models of vaccination, a timely section given the current Covid pandemic. Features Presents a wide range of biological applications of game theory. Suitable for researchers and professionals in mathematical biology and the life sciences, and as a text for postgraduate courses in mathematical biology. Provides numerous examples, exercises, and Python code.
Nonnegative matrix factorization (NMF) in its modern form has become a standard tool in the analysis of high-dimensional data sets. This book provides a comprehensive and up-to-date account of the most important aspects of the NMF problem and is the first to detail its theoretical aspects, including geometric interpretation, nonnegative rank, complexity, and uniqueness. It explains why understanding these theoretical insights is key to using this computational tool effectively and meaningfully. Nonnegative Matrix Factorization is accessible to a wide audience and is ideal for anyone interested in the workings of NMF. It discusses some new results on the nonnegative rank and the identifiability of NMF and makes available MATLAB codes for readers to run the numerical examples presented in the book. Graduate students starting to work on NMF and researchers interested in better understanding the NMF problem and how they can use it will find this book useful. It can be used in advanced undergraduate and graduate-level courses on numerical linear algebra and on advanced topics in numerical linear algebra and requires only a basic knowledge of linear algebra and optimization.
The ultimate lateral-thinking challenge. If you relish a serious mental workout, this collection of 100 brain teasers will demand your very best lateral thinking skills and mathematical rigour to solve. These puzzles will amuse and perplex in equal measure. But do not worry, full, detailed solutions are found at the back of the book so you can get into the head of these fiendish setters! These mental puzzles require serious application, imagination and skill to solve. Some demand a logical approach, others a methodical, mathematical mind. Are you up to the challenge of solving these rigorous but entertaining mathematical puzzles?
This book is the very first one in the English language entirely dedicated to the Lambert W function, its generalizations, and its applications. One goal is to promote future research on the topic. The book contains all the information one needs when trying to find a result. The most important formulas and results are framed. The Lambert W function is a multi-valued inverse function with plenty of applications in areas like molecular physics, relativity theory, fuel consumption models, plasma physics, analysis of epidemics, bacterial growth models, delay differential equations, fluid mechanics, game theory, statistics, study of magnetic materials, and so on. The first part of the book gives a full treatise of the W function from theoretical point of view. The second part presents generalizations of this function which have been introduced by the need of applications where the classical W function is insufficient. The third part presents a large number of applications from physics, biology, game theory, bacterial cell growth models, and so on. The second part presents the generalized Lambert functions based on the tools we had developed in the first part. In the third part familiarity with Newtonian physics will be useful. The text is written to be accessible for everyone with only basic knowledge on calculus and complex numbers. Additional features include the Further Notes sections offering interesting research problems and information for further studies. Mathematica codes are included. The Lambert function is arguably the simplest non-elementary transcendental function out of the standard set of sin, cos, log, etc., therefore students who would like to deepen their understanding of real and complex analysis can see a new "almost elementary" function on which they can practice their knowledge.
This book presents methods for the summation of infinite and finite series and the related identities and inversion relations. The summation includes the column sums and row sums of lower triangular matrices. The convergence of the summation of infinite series is considered. The author's focus is on symbolic methods and the Riordan array approach. In addition, this book contains hundreds summation formulas and identities, which can be used as a handbook for people working in computer science, applied mathematics, and computational mathematics, particularly, combinatorics, computational discrete mathematics, and computational number theory. The exercises at the end of each chapter help deepen understanding. Much of the materials in this book has never appeared before in textbook form. This book can be used as a suitable textbook for advanced courses for high lever undergraduate and lower lever graduate students. It is also an introductory self-study book for re- searchers interested in this field, while some materials of the book can be used as a portal for further research.
Key problems and conjectures have played an important role in promoting the development of Ramsey theory, a field where great progress has been made during the past two decades, with some old problems solved and many new problems proposed. The present book will be helpful to readers who wish to learn about interesting problems in Ramsey theory, to see how they are interconnected, and then to study them in depth. This book is the first problem book of such scope in Ramsey theory. Many unsolved problems, conjectures and related partial results in Ramsey theory are presented, in areas such as extremal graph theory, additive number theory, discrete geometry, functional analysis, algorithm design, and in other areas. Most presented problems are easy to understand, but they may be difficult to solve. They can be appreciated on many levels and by a wide readership, ranging from undergraduate students majoring in mathematics to research mathematicians. This collection is an essential reference for mathematicians working in combinatorics and number theory, as well as for computer scientists studying algorithms. Contents Some definitions and notations Ramsey theory Bi-color diagonal classical Ramsey numbers Paley graphs and lower bounds for R(k, k) Bi-color off-diagonal classical Ramsey numbers Multicolor classical Ramsey numbers Generalized Ramsey numbers Folkman numbers The Erdos-Hajnal conjecture Other Ramsey-type problems in graph theory On van der Waerden numbers and Szemeredi's theorem More problems of Ramsey type in additive number theory Sidon-Ramsey numbers Games in Ramsey theory Local Ramsey theory Set-coloring Ramsey theory Other problems and conjectures
Features: Suitable for PhD candidates and researchers. Requires prerequisites in set theory, general topology and abstract algebra, but is otherwise self-contained.
Geometric Data Analysis designates the approach of Multivariate Statistics that conceptualizes the set of observations as a Euclidean cloud of points. Combinatorial Inference in Geometric Data Analysis gives an overview of multidimensional statistical inference methods applicable to clouds of points that make no assumption on the process of generating data or distributions, and that are not based on random modelling but on permutation procedures recasting in a combinatorial framework. It focuses particularly on the comparison of a group of observations to a reference population (combinatorial test) or to a reference value of a location parameter (geometric test), and on problems of homogeneity, that is the comparison of several groups for two basic designs. These methods involve the use of combinatorial procedures to build a reference set in which we place the data. The chosen test statistics lead to original extensions, such as the geometric interpretation of the observed level, and the construction of a compatibility region. Features: Defines precisely the object under study in the context of multidimensional procedures, that is clouds of points Presents combinatorial tests and related computations with R and Coheris SPAD software Includes four original case studies to illustrate application of the tests Includes necessary mathematical background to ensure it is self-contained This book is suitable for researchers and students of multivariate statistics, as well as applied researchers of various scientific disciplines. It could be used for a specialized course taught at either master or PhD level.
Combinatorial Nullstellensatz is a novel theorem in algebra introduced by Noga Alon to tackle combinatorial problems in diverse areas of mathematics. This book focuses on the applications of this theorem to graph colouring. A key step in the applications of Combinatorial Nullstellensatz is to show that the coefficient of a certain monomial in the expansion of a polynomial is nonzero. The major part of the book concentrates on three methods for calculating the coefficients: Alon-Tarsi orientation: The task is to show that a graph has an orientation with given maximum out-degree and for which the number of even Eulerian sub-digraphs is different from the number of odd Eulerian sub-digraphs. In particular, this method is used to show that a graph whose edge set decomposes into a Hamilton cycle and vertex-disjoint triangles is 3-choosable, and that every planar graph has a matching whose deletion results in a 4-choosable graph. Interpolation formula for the coefficient: This method is in particular used to show that toroidal grids of even order are 3-choosable, r-edge colourable r-regular planar graphs are r-edge choosable, and complete graphs of order p+1, where p is a prime, are p-edge choosable. Coefficients as the permanents of matrices: This method is in particular used in the study of the list version of vertex-edge weighting and to show that every graph is (2,3)-choosable. It is suited as a reference book for a graduate course in mathematics.
High quality meshes play a key role in many applications based on digital modeling and simulation. The finite element method is a paragon for such an approach and it is well known that quality meshes can significantly improve computational efficiency and solution accuracy of this method. Therefore, a lot of effort has been put in methods for improving mesh quality. These range from simple geometric approaches, like Laplacian smoothing, with a high computational efficiency but possible low resulting mesh quality, to global optimization-based methods, resulting in an excellent mesh quality at the cost of an increased computational and implementational complexity. The geometric element transformation method (GETMe) aims to fill the gap between these two approaches. It is based on geometric mesh element transformations, which iteratively transform polygonal and polyhedral elements into their regular counterparts or into elements with a prescribed shape. GETMe combines a Laplacian smoothing-like computational efficiency with a global optimization-like effectiveness. The method is straightforward to implement and its variants can also be used to improve tangled and anisotropic meshes. This book describes the mathematical theory of geometric element transformations as foundation for mesh smoothing. It gives a thorough introduction to GETMe-based mesh smoothing and its algorithms providing a framework to focus on effectively improving key mesh quality aspects. It addresses the improvement of planar, surface, volumetric, mixed, isotropic, and anisotropic meshes and addresses aspects of combining mesh smoothing with topological mesh modification. The advantages of GETMe-based mesh smoothing are demonstrated by the example of various numerical tests. These include smoothing of real world meshes from engineering applications as well as smoothing of synthetic meshes for demonstrating key aspects of GETMe-based mesh improvement. Results are compared with those of other smoothing methods in terms of runtime behavior, mesh quality, and resulting finite element solution efficiency and accuracy. Features: * Helps to improve finite element mesh quality by applying geometry-driven mesh smoothing approaches. * Supports the reader in understanding and implementing GETMe-based mesh smoothing. * Discusses aspects and properties of GETMe smoothing variants and thus provides guidance for choosing the appropriate mesh improvement algorithm. * Addresses smoothing of various mesh types: planar, surface, volumetric, isotropic, anisotropic, non-mixed, and mixed. * Provides and analyzes geometric element transformations for polygonal and polyhedral elements with regular and non-regular limits. * Includes a broad range of numerical examples and compares results with those of other smoothing methods.
Most coding theory experts date the origin of the subject with the 1948 publication of A Mathematical Theory of Communication by Claude Shannon. Since then, coding theory has grown into a discipline with many practical applications (antennas, networks, memories), requiring various mathematical techniques, from commutative algebra, to semi-definite programming, to algebraic geometry. Most topics covered in the Concise Encyclopedia of Coding Theory are presented in short sections at an introductory level and progress from basic to advanced level, with definitions, examples, and many references. The book is divided into three parts: Part I fundamentals: cyclic codes, skew cyclic codes, quasi-cyclic codes, self-dual codes, codes and designs, codes over rings, convolutional codes, performance bounds Part II families: AG codes, group algebra codes, few-weight codes, Boolean function codes, codes over graphs Part III applications: alternative metrics, algorithmic techniques, interpolation decoding, pseudo-random sequences, lattices, quantum coding, space-time codes, network coding, distributed storage, secret-sharing, and code-based-cryptography. Features Suitable for students and researchers in a wide range of mathematical disciplines Contains many examples and references Most topics take the reader to the frontiers of research
The book reviews inequalities for weighted entry sums of matrix powers. Applications range from mathematics and CS to pure sciences. It unifies and generalizes several results for products and powers of sesquilinear forms derived from powers of Hermitian, positive-semidefinite, as well as nonnegative matrices. It shows that some inequalities are valid only in specific cases. How to translate the Hermitian matrix results into results for alternating powers of general rectangular matrices? Inequalities that compare the powers of the row and column sums to the row and column sums of the matrix powers are refined for nonnegative matrices. Lastly, eigenvalue bounds and derive results for iterated kernels are improved.
This book contains fundamental concepts on discrete mathematical structures in an easy to understand style so that the reader can grasp the contents and explanation easily. The concepts of discrete mathematical structures have application to computer science, engineering and information technology including in coding techniques, switching circuits, pointers and linked allocation, error corrections, as well as in data networking, Chemistry, Biology and many other scientific areas. The book is for undergraduate and graduate levels learners and educators associated with various courses and progammes in Mathematics, Computer Science, Engineering and Information Technology. The book should serve as a text and reference guide to many undergraduate and graduate programmes offered by many institutions including colleges and universities. Readers will find solved examples and end of chapter exercises to enhance reader comprehension. Features Offers comprehensive coverage of basic ideas of Logic, Mathematical Induction, Graph Theory, Algebraic Structures and Lattices and Boolean Algebra Provides end of chapter solved examples and practice problems Delivers materials on valid arguments and rules of inference with illustrations Focuses on algebraic structures to enable the reader to work with discrete structures
The first part of this book introduces the Schubert Cells and varieties of the general linear group Gl (k^(r+1)) over a field k according to Ehresmann geometric way. Smooth resolutions for these varieties are constructed in terms of Flag Configurations in k^(r+1) given by linear graphs called Minimal Galleries. In the second part, Schubert Schemes, the Universal Schubert Scheme and their Canonical Smooth Resolution, in terms of the incidence relation in a Tits relative building are constructed for a Reductive Group Scheme as in Grothendieck's SGAIII. This is a topic where algebra and algebraic geometry, combinatorics, and group theory interact in unusual and deep ways.
Presented in this monograph is the current state-of-the-art in the theory of convex structures. The notion of convexity covered here is considerably broader than the classic one; specifically, it is not restricted to the context of vector spaces. Classical concepts of order-convex sets (Birkhoff) and of geodesically convex sets (Menger) are directly inspired by intuition; they go back to the first half of this century. An axiomatic approach started to develop in the early Fifties. The author became attracted to it in the mid-Seventies, resulting in the present volume, in which graphs appear side-by-side with Banach spaces, classical geometry with matroids, and ordered sets with metric spaces. A wide variety of results has been included (ranging for instance from the area of partition calculus to that of continuous selection). The tools involved are borrowed from areas ranging from discrete mathematics to infinite-dimensional topology. Although addressed primarily to the researcher, parts of this monograph can be used as a basis for a well-balanced, one-semester graduate course.
We propose here a study of 'semiexact' and 'homological' categories as a basis for a generalised homological algebra. Our aim is to extend the homological notions to deeply non-abelian situations, where satellites and spectral sequences can still be studied.This is a sequel of a book on 'Homological Algebra, The interplay of homology with distributive lattices and orthodox semigroups', published by the same Editor, but can be read independently of the latter.The previous book develops homological algebra in p-exact categories, i.e. exact categories in the sense of Puppe and Mitchell - a moderate generalisation of abelian categories that is nevertheless crucial for a theory of 'coherence' and 'universal models' of (even abelian) homological algebra. The main motivation of the present, much wider extension is that the exact sequences or spectral sequences produced by unstable homotopy theory cannot be dealt with in the previous framework.According to the present definitions, a semiexact category is a category equipped with an ideal of 'null' morphisms and provided with kernels and cokernels with respect to this ideal. A homological category satisfies some further conditions that allow the construction of subquotients and induced morphisms, in particular the homology of a chain complex or the spectral sequence of an exact couple.Extending abelian categories, and also the p-exact ones, these notions include the usual domains of homology and homotopy theories, e.g. the category of 'pairs' of topological spaces or groups; they also include their codomains, since the sequences of homotopy 'objects' for a pair of pointed spaces or a fibration can be viewed as exact sequences in a homological category, whose objects are actions of groups on pointed sets.
Appropriate for one- or two-semester, junior- to senior-level combinatorics courses. This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. This trusted best-seller covers the key combinatorial ideas-including the pigeon-hole principle, counting techniques, permutations and combinations, Polya counting, binomial coefficients, inclusion-exclusion principle, generating functions and recurrence relations, combinatortial structures (matchings, designs, graphs), and flows in networks. The 5th Edition incorporates feedback from users to the exposition throughout and adds a wealth of new exercises. |
![]() ![]() You may like...
Thoughts on the Letter of Edmund Burke…
Willoughby Bertie Abingdon
Paperback
R343
Discovery Miles 3 430
|