![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Number theory > General
This book is mostly based on the author's 25 years of teaching combinatorics to two distinct sets of students: first-year students and seniors from all backgrounds, not just limited to only those majoring in mathematics and physics. The prerequisites are kept to a minimum; essentially, only high school algebra is required. The design is to go from zero knowledge to advanced themes and various applications during a semester of three or three and a half months with quite a few topics intended for research projects and additional reading.This unique book features the key themes of classical introductory combinatorics, modeling (mainly linear), and elementary number theory with a constant focus on applications in statistics, physics, biology, economics, and computer science. These applications include dimers, random walks, binomial and Poisson distributions, games of chance (lottery, dice, poker, roulette), pricing options, population growth, tree growth, modeling epidemic spread, invasion ecology, fission reactors, and networks.A lot of material is provided in the form of relatively self-contained problems, about 135, and exercises, about 270, which are almost always with hints and answers. A systematic introduction to number theory (with complete justifications) is a significant part of the book, including finite fields, Pell's equations, continued fractions, quadratic reciprocity, the Frobenius coin problem, Pisano periods, applications to magic and Latin squares and elements of cryptography. The recurrence relations and modeling play a very significant role, including the usage of Bessel functions for motivated readers. The book contains a lot of history of mathematics and recreational mathematics.
This book provides a conceptual introduction into the representation theory of local and global groups, with final emphasis on automorphic representations of reductive groups G over number fields F.Our approach to automorphic representations differs from the usual literature: We do not consider 'K-finite' automorphic forms, but we allow a richer class of smooth functions of uniform moderate growth. Contrasting the usual approach, our space of 'smooth-automorphic forms' is intrinsic to the group scheme G/F.This setup also covers the advantage that a perfect representation-theoretical symmetry between the archimedean and non-archimedean places of the number field F is regained, by making the bigger space of smooth-automorphic forms into a proper, continuous representation of the full group of adelic points of G.Graduate students and researchers will find the covered topics appear for the first time in a book, where the theory of smooth-automorphic representations is robustly developed and presented in great detail.
Perfect and amicable numbers, as well as a majority of classes of special numbers, have a long and rich history connected with the names of many famous mathematicians. This book gives a complete presentation of the theory of two classes of special numbers (perfect numbers and amicable numbers) and gives much of their properties, facts and theorems with full proofs of them, as well as their numerous analogue and generalizations.
For one-semester undergraduate courses in Elementary Number Theory. A Friendly Introduction to Number Theory, Fourth Edition is designed to introduce students to the overall themes and methodology of mathematics through the detailed study of one particular facet-number theory. Starting with nothing more than basic high school algebra, students are gradually led to the point of actively performing mathematical research while getting a glimpse of current mathematical frontiers. The writing is appropriate for the undergraduate audience and includes many numerical examples, which are analyzed for patterns and used to make conjectures. Emphasis is on the methods used for proving theorems rather than on specific results.
Elementary Number Theory, 6th Edition, blends classical theory with modern applications and is notable for its outstanding exercise sets. A full range of exercises, from basic to challenging, helps students explore key concepts and push their understanding to new heights. Computational exercises and computer projects are also available. Reflecting many years of professor feedback, this edition offers new examples, exercises, and applications, while incorporating advancements and discoveries in number theory made in the past few years.
In this monograph, we study recent results on some categories of trigonometric/exponential sums along with various of their applications in Mathematical Analysis and Analytic Number Theory. Through the two chapters of this monograph, we wish to highlight the applicability and breadth of techniques of trigonometric/exponential sums in various problems focusing on the interplay of Mathematical Analysis and Analytic Number Theory. We wish to stress the point that the goal is not only to prove the desired results, but also to present a plethora of intermediate Propositions and Corollaries investigating the behaviour of such sums, which can also be applied in completely different problems and settings than the ones treated within this monograph.In the present work we mainly focus on the applications of trigonometric/exponential sums in the study of Ramanujan sums - which constitute a very classical domain of research in Number Theory - as well as the study of certain cotangent sums with a wide range of applications, especially in the study of Dedekind sums and a facet of the research conducted on the Riemann Hypothesis. For example, in our study of the cotangent sums treated within the second chapter, the methods and techniques employed reveal unexpected connections with independent and very interesting problems investigated in the past by R de la Breteche and G Tenenbaum on trigonometric series, as well as by S Marmi, P Moussa and J-C Yoccoz on Dynamical Systems.Overall, a reader who has mastered fundamentals of Mathematical Analysis, as well as having a working knowledge of Classical and Analytic Number Theory, will be able to gradually follow all the parts of the monograph. Therefore, the present monograph will be of interest to advanced undergraduate and graduate students as well as researchers who wish to be informed on the latest developments on the topics treated.
Complex analysis is found in many areas of applied mathematics, from fluid mechanics, thermodynamics, signal processing, control theory, mechanical and electrical engineering to quantum mechanics, among others. And of course, it is a fundamental branch of pure mathematics. The coverage in this text includes advanced topics that are not always considered in more elementary texts. These topics include, a detailed treatment of univalent functions, harmonic functions, subharmonic and superharmonic functions, Nevanlinna theory, normal families, hyperbolic geometry, iteration of rational functions, and analytic number theory. As well, the text includes in depth discussions of the Dirichlet Problem, Green's function, Riemann Hypothesis, and the Laplace transform. Some beautiful color illustrations supplement the text of this most elegant subject.
A magician appears able to banish chaos at will: a deck of cards arranged in order is shuffled--apparently randomly--by a member of the audience. Then, hey presto! The deck is suddenly put back in its original order! Magic tricks like this are easy to perform and have an interesting mathematical foundation. In this rich, colorfully illustrated volume, Ehrhard Behrends presents around 30 card tricks and number games that are easy to learn, with no prior knowledge required. This is math as you've never experienced it before: entertaining and fun!
The guiding principle in this monograph is to develop a new theory of modular forms which encompasses most of the available theory of modular forms in the literature, such as those for congruence groups, Siegel and Hilbert modular forms, many types of automorphic forms on Hermitian symmetric domains, Calabi-Yau modular forms, with its examples such as Yukawa couplings and topological string partition functions, and even go beyond all these cases. Its main ingredient is the so-called 'Gauss-Manin connection in disguise'.
This book is the first to provide a comprehensive and elementary account of the new Iwasawa theory innovated via the deformation theory of modular forms and Galois representations. The deformation theory of modular forms is developed by generalizing the cohomological approach discovered in the author's 2019 AMS Leroy P Steele Prize-winning article without using much algebraic geometry.Starting with a description of Iwasawa's classical results on his proof of the main conjecture under the Kummer-Vandiver conjecture (which proves cyclicity of his Iwasawa module more than just proving his main conjecture), we describe a generalization of the method proving cyclicity to the adjoint Selmer group of every ordinary deformation of a two-dimensional Artin Galois representation.The fundamentals in the first five chapters are as follows:Many open problems are presented to stimulate young researchers pursuing their field of study.
This book summarizes recent inventions, provides guidelines and recommendations, and demonstrates many practical applications of homomorphic encryption. This collection of papers represents the combined wisdom of the community of leading experts on Homomorphic Encryption. In the past 3 years, a global community consisting of researchers in academia, industry, and government, has been working closely to standardize homomorphic encryption. This is the first publication of whitepapers created by these experts that comprehensively describes the scientific inventions, presents a concrete security analysis, and broadly discusses applicable use scenarios and markets. This book also features a collection of privacy-preserving machine learning applications powered by homomorphic encryption designed by groups of top graduate students worldwide at the Private AI Bootcamp hosted by Microsoft Research. The volume aims to connect non-expert readers with this important new cryptographic technology in an accessible and actionable way. Readers who have heard good things about homomorphic encryption but are not familiar with the details will find this book full of inspiration. Readers who have preconceived biases based on out-of-date knowledge will see the recent progress made by industrial and academic pioneers on optimizing and standardizing this technology. A clear picture of how homomorphic encryption works, how to use it to solve real-world problems, and how to efficiently strengthen privacy protection, will naturally become clear.
This is the fourth in a series of proceedings of the Combinatorial and Additive Number Theory (CANT) conferences, based on talks from the 2019 and 2020 workshops at the City University of New York. The latter was held online due to the COVID-19 pandemic, and featured speakers from North and South America, Europe, and Asia. The 2020 Zoom conference was the largest CANT conference in terms of the number of both lectures and participants. These proceedings contain 25 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003 at the CUNY Graduate Center, the workshop surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Topics featured in this volume include sumsets, zero-sum sequences, minimal complements, analytic and prime number theory, Hausdorff dimension, combinatorial and discrete geometry, and Ramsey theory. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.
Linear Algebra: Algorithms, Applications, and Techniques, Fourth Edition offers a modern and algorithmic approach to computation while providing clear and straightforward theoretical background information. The book guides readers through the major applications, with chapters on properties of real numbers, proof techniques, matrices, vector spaces, linear transformations, eigen values, and Euclidean inner products. Appendices on Jordan canonical forms and Markov chains are included for further study. This useful textbook presents broad and balanced views of theory, with key material highlighted and summarized in each chapter. To further support student practice, the book also includes ample exercises with answers and hints.
Introducing the Collins Modern Classics, a series featuring some of the most significant books of recent times, books that shed light on the human experience - classics which will endure for generations to come. 'Maths is one of the purest forms of thought, and to outsiders mathematicians may seem almost otherworldly' In 1963, schoolboy Andrew Wiles stumbled across the world's greatest mathematical problem: Fermat's Last Theorem. Unsolved for over 300 years, he dreamed of cracking it. Combining thrilling storytelling with a fascinating history of scientific discovery, Simon Singh uncovers how an Englishman, after years of secret toil, finally solved mathematics' most challenging problem. Fermat's Last Theorem is remarkable story of human endeavour, obsession and intellectual brilliance, sealing its reputation as a classic of popular science writing. 'To read it is to realise that there is a world of beauty and intellectual challenge that is denied to 99.9 per cent of us who are not high-level mathematicians' The Times
In 1963 a schoolboy browsing in his local library stumbled across the world's greatest mathematical problem: Fermat's Last Theorem, a puzzle that every child can understand but which has baffled mathematicians for over 300 years. Aged just ten, Andrew Wiles dreamed that he would crack it. Wiles's lifelong obsession with a seemingly simple challenge set by a long-dead Frenchman is an emotional tale of sacrifice and extraordinary determination. In the end, Wiles was forced to work in secrecy and isolation for seven years, harnessing all the power of modern maths to achieve his childhood dream. Many before him had tried and failed, including a 18-century philanderer who was killed in a duel. An 18-century Frenchwoman made a major breakthrough in solving the riddle, but she had to attend maths lectures at the Ecole Polytechnique disguised as a man since women were forbidden entry to the school. A remarkable story of human endeavour and intellectual brilliance over three centuries, Fermat's Last Theorem will fascinate both specialist and general readers.
Noncommutative geometry studies an interplay between spatial forms and algebras with non-commutative multiplication. This book covers the key concepts of noncommutative geometry and its applications in topology, algebraic geometry, and number theory. Our presentation is accessible to the graduate students as well as nonexperts in the field. The second edition includes two new chapters on arithmetic topology and quantum arithmetic.
This book provides a broad, interdisciplinary overview of non-Archimedean analysis and its applications. Featuring new techniques developed by leading experts in the field, it highlights the relevance and depth of this important area of mathematics, in particular its expanding reach into the physical, biological, social, and computational sciences as well as engineering and technology. In the last forty years the connections between non-Archimedean mathematics and disciplines such as physics, biology, economics and engineering, have received considerable attention. Ultrametric spaces appear naturally in models where hierarchy plays a central role - a phenomenon known as ultrametricity. In the 80s, the idea of using ultrametric spaces to describe the states of complex systems, with a natural hierarchical structure, emerged in the works of Fraunfelder, Parisi, Stein and others. A central paradigm in the physics of certain complex systems - for instance, proteins - asserts that the dynamics of such a system can be modeled as a random walk on the energy landscape of the system. To construct mathematical models, the energy landscape is approximated by an ultrametric space (a finite rooted tree), and then the dynamics of the system is modeled as a random walk on the leaves of a finite tree. In the same decade, Volovich proposed using ultrametric spaces in physical models dealing with very short distances. This conjecture has led to a large body of research in quantum field theory and string theory. In economics, the non-Archimedean utility theory uses probability measures with values in ordered non-Archimedean fields. Ultrametric spaces are also vital in classification and clustering techniques. Currently, researchers are actively investigating the following areas: p-adic dynamical systems, p-adic techniques in cryptography, p-adic reaction-diffusion equations and biological models, p-adic models in geophysics, stochastic processes in ultrametric spaces, applications of ultrametric spaces in data processing, and more. This contributed volume gathers the latest theoretical developments as well as state-of-the art applications of non-Archimedean analysis. It covers non-Archimedean and non-commutative geometry, renormalization, p-adic quantum field theory and p-adic quantum mechanics, as well as p-adic string theory and p-adic dynamics. Further topics include ultrametric bioinformation, cryptography and bioinformatics in p-adic settings, non-Archimedean spacetime, gravity and cosmology, p-adic methods in spin glasses, and non-Archimedean analysis of mental spaces. By doing so, it highlights new avenues of research in the mathematical sciences, biosciences and computational sciences.
This edited volume presents state-of-the-art developments in various areas in which Harmonic Analysis is applied. Contributions cover a variety of different topics and problems treated such as structure and optimization in computational harmonic analysis, sampling and approximation in shift invariant subspaces of L2( ), optimal rank one matrix decomposition, the Riemann Hypothesis, large sets avoiding rough patterns, Hardy Littlewood series, Navier-Stokes equations, sleep dynamics exploration and automatic annotation by combining modern harmonic analysis tools, harmonic functions in slabs and half-spaces, Andoni -Krauthgamer -Razenshteyn characterization of sketchable norms fails for sketchable metrics, random matrix theory, multiplicative completion of redundant systems in Hilbert and Banach function spaces. Efforts have been made to ensure that the content of the book constitutes a valuable resource for graduate students as well as senior researchers working on Harmonic Analysis and its various interconnections with related areas.
The Hardy-Littlewood circle method was invented over a century ago to study integer solutions to special Diophantine equations, but it has since proven to be one of the most successful all-purpose tools available to number theorists. Not only is it capable of handling remarkably general systems of polynomial equations defined over arbitrary global fields, but it can also shed light on the space of rational curves that lie on algebraic varieties. This book, in which the arithmetic of cubic polynomials takes centre stage, is aimed at bringing beginning graduate students into contact with some of the many facets of the circle method, both classical and modern. This monograph is the winner of the 2021 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
This book presents original peer-reviewed contributions from the London Mathematical Society (LMS) Midlands Regional Meeting and Workshop on 'Galois Covers, Grothendieck-Teichmuller Theory and Dessinsd'Enfants', which took place at the University of Leicester, UK, from 4 to 7 June, 2018. Within the theme of the workshop, the collected articles cover a broad range of topics and explore exciting new links between algebraic geometry, representation theory, group theory, number theory and algebraic topology. The book combines research and overview articles by prominent international researchers and provides a valuable resource for researchers and students alike.
Updated to reflect current research, Algebraic Number Theory and Fermat's Last Theorem, Fourth Edition introduces fundamental ideas of algebraic numbers and explores one of the most intriguing stories in the history of mathematics-the quest for a proof of Fermat's Last Theorem. The authors use this celebrated theorem to motivate a general study of the theory of algebraic numbers from a relatively concrete point of view. Students will see how Wiles's proof of Fermat's Last Theorem opened many new areas for future work. New to the Fourth Edition Provides up-to-date information on unique prime factorization for real quadratic number fields, especially Harper's proof that Z( 14) is Euclidean Presents an important new result: Mihailescu's proof of the Catalan conjecture of 1844 Revises and expands one chapter into two, covering classical ideas about modular functions and highlighting the new ideas of Frey, Wiles, and others that led to the long-sought proof of Fermat's Last Theorem Improves and updates the index, figures, bibliography, further reading list, and historical remarks Written by preeminent mathematicians Ian Stewart and David Tall, this text continues to teach students how to extend properties of natural numbers to more general number structures, including algebraic number fields and their rings of algebraic integers. It also explains how basic notions from the theory of algebraic numbers can be used to solve problems in number theory. |
![]() ![]() You may like...
Integer Sequences - Divisibility, Lucas…
Masum Billal, Samin Riasat
Hardcover
R3,431
Discovery Miles 34 310
Number Theory and Combinatorics - A…
Bruce M. Landman, Florian Luca, …
Hardcover
R5,665
Discovery Miles 56 650
Associative and Non-Associative Algebras…
Mercedes Siles Molina, Laiachi El Kaoutit, …
Hardcover
R2,975
Discovery Miles 29 750
Combinatorial Game Theory - A Special…
Richard J. Nowakowski, Bruce M. Landman, …
Hardcover
R5,960
Discovery Miles 59 600
From Analysis to Visualization - A…
David H. Bailey, Naomi Simone Borwein, …
Hardcover
R3,009
Discovery Miles 30 090
A Course on Basic Model Theory
Haimanti Sarbadhikari, Shashi Mohan Srivastava
Hardcover
R2,290
Discovery Miles 22 900
|