![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory > General
The decomposition of the space L2(G(Q)\G(A)), where G is a reductive group defined over Q and A is the ring of adeles of Q, is a deep problem at the intersection of number and group theory. Langlands reduced this decomposition to that of the (smaller) spaces of cuspidal automorphic forms for certain subgroups of G. This book describes this proof in detail. The starting point is the theory of automorphic forms, which can also serve as a first step towards understanding the Arthur-Selberg trace formula. To make the book reasonably self-contained, the authors also provide essential background in subjects such as: automorphic forms; Eisenstein series; Eisenstein pseudo-series, and their properties. It is thus also an introduction, suitable for graduate students, to the theory of automorphic forms, the first written using contemporary terminology. It will be welcomed by number theorists, representation theorists and all whose work involves the Langlands program.
The book is aimed at people working in number theory or at least interested in this part of mathematics. It presents the development of the theory of algebraic numbers up to the year 1950 and contains a rather complete bibliography of that period. The reader will get information about results obtained before 1950. It is hoped that this may be helpful in preventing rediscoveries of old results, and might also inspire the reader to look at the work done earlier, which may hide some ideas which could be applied in contemporary research.
This proceedings volume contains articles related to the research presented at the 2017 Simons Symposium on p-adic Hodge theory. This symposium was focused on recent developments in p-adic Hodge theory, especially those concerning integral questions and their connections to notions in algebraic topology. This volume features original research articles as well as articles that contain new research and survey some of these recent developments. It is the first of three volumes dedicated to p-adic Hodge theory.
This book presents the mathematical background underlying security modeling in the context of next-generation cryptography. By introducing new mathematical results in order to strengthen information security, while simultaneously presenting fresh insights and developing the respective areas of mathematics, it is the first-ever book to focus on areas that have not yet been fully exploited for cryptographic applications such as representation theory and mathematical physics, among others. Recent advances in cryptanalysis, brought about in particular by quantum computation and physical attacks on cryptographic devices, such as side-channel analysis or power analysis, have revealed the growing security risks for state-of-the-art cryptographic schemes. To address these risks, high-performance, next-generation cryptosystems must be studied, which requires the further development of the mathematical background of modern cryptography. More specifically, in order to avoid the security risks posed by adversaries with advanced attack capabilities, cryptosystems must be upgraded, which in turn relies on a wide range of mathematical theories. This book is suitable for use in an advanced graduate course in mathematical cryptography, while also offering a valuable reference guide for experts.
In this book, we first review the history and current situation of the perfect number problem, including the origin story of the Mersenne primes, and then consider the history and current situation of the Fibonacci sequence. Both topics include results from our own research. In the later sections, we define the square sum perfect numbers, and describe for the first time the secret relationships connecting the square sum perfect numbers, the Fibonacci sequence, the Lucas sequence, the twin prime conjecture, and the Fermat primes. Throughout, we raise various interesting questions and conjectures.
A complete, self-contained introduction to a powerful and resurging mathematical discipline … Combinatorial Geometry presents and explains with complete proofs some of the most important results and methods of this relatively young mathematical discipline, started by Minkowski, Fejes Tóth, Rogers, and Erd???s. Nearly half the results presented in this book were discovered over the past twenty years, and most have never before appeared in any monograph. Combinatorial Geometry will be of particular interest to mathematicians, computer scientists, physicists, and materials scientists interested in computational geometry, robotics, scene analysis, and computer-aided design. It is also a superb textbook, complete with end-of-chapter problems and hints to their solutions that help students clarify their understanding and test their mastery of the material. Topics covered include:
As a first comprehensive overview on Farey sequences and subsequences, this monograph is intended as a reference for anyone looking for specific material or formulas related to the subject. Duality of subsequences and maps between them are discussed and explicit proofs are shown in detail. From the Content Basic structural and enumerative properties of Farey sequences, Collective decision making, Committee methods in pattern recognition, Farey duality, Farey sequence, Fundamental Farey subsequences, Monotone bijections between Farey subsequences
The classical fields are the real, rational, complex and p-adic numbers. Each of these fields comprises several intimately interwoven algebraical and topological structures. This comprehensive volume analyzes the interaction and interdependencies of these different aspects. The real and rational numbers are examined additionally with respect to their orderings, and these fields are compared to their non-standard counterparts. Typical substructures and quotients, relevant automorphism groups and many counterexamples are described. Also discussed are completion procedures of chains and of ordered and topological groups, with applications to classical fields. The p-adic numbers are placed in the context of general topological fields: absolute values, valuations and the corresponding topologies are studied, and the classification of all locally compact fields and skew fields is presented. Exercises are provided with hints and solutions at the end of the book. An appendix reviews ordinals and cardinals, duality theory of locally compact Abelian groups and various constructions of fields.
Paul Erdos was one of the most influential mathematicians of the twentieth century, whose work in number theory, combinatorics, set theory, analysis, and other branches of mathematics has determined the development of large areas of these fields. In 1999, a conference was organized to survey his work, his contributions to mathematics, and the far-reaching impact of his work on many branches of mathematics. On the 100th anniversary of his birth, this volume undertakes the almost impossible task to describe the ways in which problems raised by him and topics initiated by him (indeed, whole branches of mathematics) continue to flourish. Written by outstanding researchers in these areas, these papers include extensive surveys of classical results as well as of new developments."
Hypergeometric functions have occupied a significant position in mathematics for over two centuries. This monograph, by one of the foremost experts, is concerned with the Boyarsky principle which expresses the analytical properties of a certain proto-gamma function. Professor Dwork develops here a theory which is broad enough to encompass several of the most important hypergeometric functions in the literature and their cohomology. A central theme is the development of the Laplace transform in this context and its application to spaces of functions associated with hypergeometric functions. Consequently, this book represents a significant further development of the theory and demonstrates how the Boyarsky principle may be given a cohomological interpretation. The author includes an exposition of the relationship between this theory and Gauss sums and generalized Jacobi sums, and explores the theory of duality which throws new light on the theory of exponential sums and confluent hypergeometric functions.
New to the Fourth Edition Reorganised and revised chapter seven and thirteen New exercises and examples Expanded, updated references Further historical material on figures besides Galois: Omar Khayyam, Vandermonde, Ruffini, and Abel A new final chapter discussing other directions in which Galois Theory has developed: the inverse Galois problem, differential Galois theory, and a (very) brief introduction to p-adic Galois representations.
The first part of this book covers the key concepts of cryptography on an undergraduate level, from encryption and digital signatures to cryptographic protocols. Essential techniques are demonstrated in protocols for key exchange, user identification, electronic elections and digital cash. In the second part, more advanced topics are addressed, such as the bit security of one-way functions and computationally perfect pseudorandom bit generators. The security of cryptographic schemes is a central topic. Typical examples of provably secure encryption and signature schemes and their security proofs are given. Though particular attention is given to the mathematical foundations, no special background in mathematics is presumed. The necessary algebra, number theory and probability theory are included in the appendix. Each chapter closes with a collection of exercises. In the second edition the authors added a complete description of the AES, an extended section on cryptographic hash functions, and new sections on random oracle proofs and public-key encryption schemes that are provably secure against adaptively-chosen-ciphertext attacks. The third edition is a further substantive extension, with new topics added, including: elliptic curve cryptography; Paillier encryption; quantum cryptography; the new SHA-3 standard for cryptographic hash functions; a considerably extended section on electronic elections and Internet voting; mix nets; and zero-knowledge proofs of shuffles. The book is appropriate for undergraduate and graduate students in computer science, mathematics, and engineering.
The theory of numbers continues to occupy a central place in modern mathematics because of both its long history over many centuries as well as its many diverse applications to other fields such as discrete mathematics, cryptography, and coding theory. The proof by Andrew Wiles (with Richard Taylor) of Fermat's last theorem published in 1995 illustrates the high level of difficulty of problems encountered in number-theoretic research as well as the usefulness of the new ideas arising from its proof. The thirteenth conference of the Canadian Number Theory Association was held at Carleton University, Ottawa, Ontario, Canada from June 16 to 20, 2014. Ninety-nine talks were presented at the conference on the theme of advances in the theory of numbers. Topics of the talks reflected the diversity of current trends and activities in modern number theory. These topics included modular forms, hypergeometric functions, elliptic curves, distribution of prime numbers, diophantine equations, L-functions, Diophantine approximation, and many more. This volume contains some of the papers presented at the conference. All papers were refereed. The high quality of the articles and their contribution to current research directions make this volume a must for any mathematics library and is particularly relevant to researchers and graduate students with an interest in number theory. The editors hope that this volume will serve as both a resource and an inspiration to future generations of researchers in the theory of numbers.
Key problems and conjectures have played an important role in promoting the development of Ramsey theory, a field where great progress has been made during the past two decades, with some old problems solved and many new problems proposed. The present book will be helpful to readers who wish to learn about interesting problems in Ramsey theory, to see how they are interconnected, and then to study them in depth. This book is the first problem book of such scope in Ramsey theory. Many unsolved problems, conjectures and related partial results in Ramsey theory are presented, in areas such as extremal graph theory, additive number theory, discrete geometry, functional analysis, algorithm design, and in other areas. Most presented problems are easy to understand, but they may be difficult to solve. They can be appreciated on many levels and by a wide readership, ranging from undergraduate students majoring in mathematics to research mathematicians. This collection is an essential reference for mathematicians working in combinatorics and number theory, as well as for computer scientists studying algorithms. Contents Some definitions and notations Ramsey theory Bi-color diagonal classical Ramsey numbers Paley graphs and lower bounds for R(k, k) Bi-color off-diagonal classical Ramsey numbers Multicolor classical Ramsey numbers Generalized Ramsey numbers Folkman numbers The Erdos-Hajnal conjecture Other Ramsey-type problems in graph theory On van der Waerden numbers and Szemeredi's theorem More problems of Ramsey type in additive number theory Sidon-Ramsey numbers Games in Ramsey theory Local Ramsey theory Set-coloring Ramsey theory Other problems and conjectures
This proceedings volume is based on papers presented at the Workshops on Combinatorial and Additive Number Theory (CANT), which were held at the Graduate Center of the City University of New York in 2011 and 2012. The goal of the workshops is to survey recent progress in combinatorial number theory and related parts of mathematics. The workshop attracts researchers and students who discuss the state-of-the-art, open problems and future challenges in number theory.
The book provides an introduction to modern abstract algebra and its applications. It covers all major topics of classical theory of numbers, groups, rings, fields and finite dimensional algebras. The book also provides interesting and important modern applications in such subjects as Cryptography, Coding Theory, Computer Science and Physics. In particular, it considers algorithm RSA, secret sharing algorithms, Diffie-Hellman Scheme and ElGamal cryptosystem based on discrete logarithm problem. It also presents Buchberger's algorithm which is one of the important algorithms for constructing Groebner basis. Key Features: Covers all major topics of classical theory of modern abstract algebra such as groups, rings and fields and their applications. In addition it provides the introduction to the number theory, theory of finite fields, finite dimensional algebras and their applications. Provides interesting and important modern applications in such subjects as Cryptography, Coding Theory, Computer Science and Physics. Presents numerous examples illustrating the theory and applications. It is also filled with a number of exercises of various difficulty. Describes in detail the construction of the Cayley-Dickson construction for finite dimensional algebras, in particular, algebras of quaternions and octonions and gives their applications in the number theory and computer graphics.
This monograph describes and implements partially homomorphic encryption functions using a unified notation. After introducing the appropriate mathematical background, the authors offer a systematic examination of the following known algorithms: Rivest-Shamir-Adleman; Goldwasser-Micali; ElGamal; Benaloh; Naccache-Stern; Okamoto-Uchiyama; Paillier; Damgaard-Jurik; Boneh-Goh-Nissim; and Sander-Young-Yung. Over recent years partially and fully homomorphic encryption algorithms have been proposed and researchers have addressed issues related to their formulation, arithmetic, efficiency and security. Formidable efficiency barriers remain, but we now have a variety of algorithms that can be applied to various private computation problems in healthcare, finance and national security, and studying these functions may help us to understand the difficulties ahead. The book is valuable for researchers and graduate students in Computer Science, Engineering, and Mathematics who are engaged with Cryptology.
In his Master Plan Cai Chen (1167-1230) created an original divination manual based on the Yijing and keyed it to an intricate series of 81 matrixes with the properties of "magic squares." Previously unrecognized, Cai's work is a milestone in the history of mathematics, and, in introducing it, this book dramatically expands our understanding of the Chinese number theory practiced by the "Image and Number" school within Confucian philosophy. Thinkers of that leaning devised graphic arrays of the binary figures called "trigrams" and "hexagrams" in the Yijing as a way of exploring the relationship between the random draws of divination and the classic's readings. Cai adapted this perspective to his 81 matrix series, which he saw as tracing the recurring temporal cycles of the natural world. The architecture of the matrix series is echoed in the language of his divination texts, which he called "number names"-hence, the book's title. This book will appeal to those interested in philosophy, the history of science and mathematics, and Chinese intellectual history. The divination text has significant literary as well as philosophical dimensions, and its audience lies both among specialists in these fields and with a general readership interested in recreational mathematics and topics like divination, Taiji, and Fengshui.
Architecture of Mathematics describes the logical structure of Mathematics from its foundations to its real-world applications. It describes the many interweaving relationships between different areas of mathematics and its practical applications, and as such provides unique reading for professional mathematicians and nonmathematicians alike. This book can be a very important resource both for the teaching of mathematics and as a means to outline the research links between different subjects within and beyond the subject. Features All notions and properties are introduced logically and sequentially, to help the reader gradually build understanding. Focusses on illustrative examples that explain the meaning of mathematical objects and their properties. Suitable as a supplementary resource for teaching undergraduate mathematics, and as an aid to interdisciplinary research. Forming the reader's understanding of Mathematics as a unified science, the book helps to increase his general mathematical culture.
This volume is dedicated to Robert F. Tichy on the occasion of his 60th birthday. Presenting 22 research and survey papers written by leading experts in their respective fields, it focuses on areas that align with Tichy's research interests and which he significantly shaped, including Diophantine problems, asymptotic counting, uniform distribution and discrepancy of sequences (in theory and application), dynamical systems, prime numbers, and actuarial mathematics. Offering valuable insights into recent developments in these areas, the book will be of interest to researchers and graduate students engaged in number theory and its applications.
This book gathers nineteen papers presented at the first NLAGA-BIRS Symposium, which was held at the Cheikh Anta Diop University in Dakar, Senegal, on June 24-28, 2019. The four-day symposium brought together African experts on nonlinear analysis and geometry and their applications, as well as their international partners, to present and discuss mathematical results in various areas. The main goal of the NLAGA project is to advance and consolidate the development of these mathematical fields in West and Central Africa with a focus on solving real-world problems such as coastal erosion, pollution, and urban network and population dynamics problems. The book addresses a range of topics related to partial differential equations, geometrical analysis of optimal shapes, geometric structures, optimization and optimal transportation, control theory, and mathematical modeling.
This is the second in a series of three volumes dealing with important topics in algebra. Volume 2 is an introduction to linear algebra (including linear algebra over rings), Galois theory, representation theory, and the theory of group extensions. The section on linear algebra (chapters 1-5) does not require any background material from Algebra 1, except an understanding of set theory. Linear algebra is the most applicable branch of mathematics, and it is essential for students of science and engineering As such, the text can be used for one-semester courses for these students. The remaining part of the volume discusses Jordan and rational forms, general linear algebra (linear algebra over rings), Galois theory, representation theory (linear algebra over group algebras), and the theory of extension of groups follow linear algebra, and is suitable as a text for the second and third year students specializing in mathematics.
Congruences are ubiquitous in computer science, engineering, mathematics, and related areas. Developing techniques for finding (the number of) solutions of congruences is an important problem. But there are many scenarios in which we are interested in only a subset of the solutions; in other words, there are some restrictions. What do we know about these restricted congruences, their solutions, and applications? This book introduces the tools that are needed when working on restricted congruences and then systematically studies a variety of restricted congruences. Restricted Congruences in Computing defines several types of restricted congruence, obtains explicit formulae for the number of their solutions using a wide range of tools and techniques, and discusses their applications in cryptography, information security, information theory, coding theory, string theory, quantum field theory, parallel computing, artificial intelligence, computational biology, discrete mathematics, number theory, and more. This is the first book devoted to restricted congruences and their applications. It will be of interest to graduate students and researchers across computer science, electrical engineering, and mathematics.
This collaborative book presents recent trends on the study of sequences, including combinatorics on words and symbolic dynamics, and new interdisciplinary links to group theory and number theory. Other chapters branch out from those areas into subfields of theoretical computer science, such as complexity theory and theory of automata. The book is built around four general themes: number theory and sequences, word combinatorics, normal numbers, and group theory. Those topics are rounded out by investigations into automatic and regular sequences, tilings and theory of computation, discrete dynamical systems, ergodic theory, numeration systems, automaton semigroups, and amenable groups. This volume is intended for use by graduate students or research mathematicians, as well as computer scientists who are working in automata theory and formal language theory. With its organization around unified themes, it would also be appropriate as a supplemental text for graduate level courses. |
You may like...
Basic Modern Algebra with Applications
Mahima Ranjan Adhikari, Avishek Adhikari
Hardcover
R2,552
Discovery Miles 25 520
A Course on Basic Model Theory
Haimanti Sarbadhikari, Shashi Mohan Srivastava
Hardcover
R2,111
Discovery Miles 21 110
Algebraic Geometry and Number Theory…
Hussein Mourtada, Celal Cem Sarioglu, …
Hardcover
Recent Progress On Topics Of Ramanujan…
Helmut Maier, Laszlo Toth, …
Hardcover
R1,670
Discovery Miles 16 700
|