![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Number theory > General
A selection of the most accessible survey papers from the Millennial Conference on Number Theory. Presented and compiled by a group of international experts, these papers provide a current view of the state of the art and an outlook into the future of number theory research. This book serves as an inspiration to graduate students and as a reference for research mathematicians.
This book provides an introduction to some aspects of the analytic theory of automorphic forms on G=SL2(R) or the upper-half plane X, with respect to a discrete subgroup ^D*G of G of finite covolume. The point of view is inspired by the theory of infinite dimensional unitary representations of G; this is introduced in the last sections, making this connection explicit. The topics treated include the construction of fundamental domains, the notion of automorphic form on ^D*G\G and its relationship with the classical automorphic forms on X, Poincaré series, constant terms, cusp forms, finite dimensionality of the space of automorphic forms of a given type, compactness of certain convolution operators, Eisenstein series, unitary representations of G, and the spectral decomposition of L2(^D*G/G). The main prerequisites are some results in functional analysis (reviewed, with references) and some familiarity with the elementary theory of Lie groups and Lie algebras.
This book is written for undergraduates who wish to learn some basic results in analytic number theory. It covers topics such as Bertrand's Postulate, the Prime Number Theorem and Dirichlet's Theorem of primes in arithmetic progression. The materials in this book are based on A Hidebrand's 1991 lectures delivered at the University of Illinois at Urbana-Champaign and the author's course conducted at the National University of Singapore from 2001 to 2008.
This book is written for undergraduates who wish to learn some basic results in analytic number theory. It covers topics such as Bertrand's Postulate, the Prime Number Theorem and Dirichlet's Theorem of primes in arithmetic progression. The materials in this book are based on A Hidebrand's 1991 lectures delivered at the University of Illinois at Urbana-Champaign and the author's course conducted at the National University of Singapore from 2001 to 2008.
This proceedings volume gathers together original articles and survey works that originate from presentations given at the conference Transient Transcendence in Transylvania, held in Brasov, Romania, from May 13th to 17th, 2019. The conference gathered international experts from various fields of mathematics and computer science, with diverse interests and viewpoints on transcendence. The covered topics are related to algebraic and transcendental aspects of special functions and special numbers arising in algebra, combinatorics, geometry and number theory. Besides contributions on key topics from invited speakers, this volume also brings selected papers from attendees.
Pencils of Cubics and Algebraic Curves in the Real Projective Plane thoroughly examines the combinatorial configurations of n generic points in RP(2). Especially how it is the data describing the mutual position of each point with respect to lines and conics passing through others. The first section in this book answers questions such as, can one count the combinatorial configurations up to the action of the symmetric group? How are they pairwise connected via almost generic configurations? These questions are addressed using rational cubics and pencils of cubics for n = 6 and 7. The book's second section deals with configurations of eight points in the convex position. Both the combinatorial configurations and combinatorial pencils are classified up to the action of the dihedral group D8. Finally, the third section contains plentiful applications and results around Hilbert's sixteenth problem. The author meticulously wrote this book based upon years of research devoted to the topic. The book is particularly useful for researchers and graduate students interested in topology, algebraic geometry and combinatorics. Features: Examines how the shape of pencils depends on the corresponding configurations of points Includes topology of real algebraic curves Contains numerous applications and results around Hilbert's sixteenth problem About the Author: Severine Fiedler-le Touze has published several papers on this topic and has been invited to present at many conferences. She holds a Ph.D. from University Rennes1 and was a post-doc at the Mathematical Sciences Research Institute in Berkeley, California.
Pencils of Cubics and Algebraic Curves in the Real Projective Plane thoroughly examines the combinatorial configurations of n generic points in RP(2). Especially how it is the data describing the mutual position of each point with respect to lines and conics passing through others. The first section in this book answers questions such as, can one count the combinatorial configurations up to the action of the symmetric group? How are they pairwise connected via almost generic configurations? These questions are addressed using rational cubics and pencils of cubics for n = 6 and 7. The book's second section deals with configurations of eight points in the convex position. Both the combinatorial configurations and combinatorial pencils are classified up to the action of the dihedral group D8. Finally, the third section contains plentiful applications and results around Hilbert's sixteenth problem. The author meticulously wrote this book based upon years of research devoted to the topic. The book is particularly useful for researchers and graduate students interested in topology, algebraic geometry and combinatorics. Features: Examines how the shape of pencils depends on the corresponding configurations of points Includes topology of real algebraic curves Contains numerous applications and results around Hilbert's sixteenth problem About the Author: Severine Fiedler-le Touze has published several papers on this topic and has been invited to present at many conferences. She holds a Ph.D. from University Rennes1 and was a post-doc at the Mathematical Sciences Research Institute in Berkeley, California.
The Hardy-Littlewood method is a means of estimating the number of integer solutions of equations and was first applied to Waring's problem on representations of integers by sums of powers. This introduction to the method deals with its classical forms and outlines some of the more recent developments. Now in its second edition it has been fully updated; the author has made extensive revisions and added a new chapter to take account of major advances by Vaughan and Wooley. The reader is expected to be familiar with elementary number theory and postgraduate students should find it of great use as an advanced textbook. It will also be indispensable to all lecturers and research workers interested in number theory.
To date, the theoretical development of q-calculus has rested on a non-uniform basis. Generally, the bulky Gasper-Rahman notation was used, but the published works on q-calculus looked different depending on where and by whom they were written. This confusion of tongues not only complicated the theoretical development but also contributed to q-calculus remaining a neglected mathematical field. This book overcomes these problems by introducing a new and interesting notation for q-calculus based on logarithms.For instance, q-hypergeometric functions are now visually clear and easy to trace back to their hypergeometric parents. With this new notation it is also easy to see the connection between q-hypergeometric functions and the q-gamma function, something that until now has been overlooked. The book covers many topics on q-calculus, including special functions, combinatorics, and q-difference equations. Apart from a thorough review of the historical development of q-calculus, this book also presents the domains of modern physics for which q-calculus is applicable, such as particle physics and supersymmetry, to name just a few. "
Through three editions, Cryptography: Theory and Practice, has been embraced by instructors and students alike. It offers a comprehensive primer for the subject's fundamentals while presenting the most current advances in cryptography. The authors offer comprehensive, in-depth treatment of the methods and protocols that are vital to safeguarding the seemingly infinite and increasing amount of information circulating around the world. Key Features of the Fourth Edition: New chapter on the exciting, emerging new area of post-quantum cryptography (Chapter 9). New high-level, nontechnical overview of the goals and tools of cryptography (Chapter 1). New mathematical appendix that summarizes definitions and main results on number theory and algebra (Appendix A). An expanded treatment of stream ciphers, including common design techniques along with coverage of Trivium. Interesting attacks on cryptosystems, including: padding oracle attack correlation attacks and algebraic attacks on stream ciphers attack on the DUAL-EC random bit generator that makes use of a trapdoor. A treatment of the sponge construction for hash functions and its use in the new SHA-3 hash standard. Methods of key distribution in sensor networks. The basics of visual cryptography, allowing a secure method to split a secret visual message into pieces (shares) that can later be combined to reconstruct the secret. The fundamental techniques cryptocurrencies, as used in Bitcoin and blockchain. The basics of the new methods employed in messaging protocols such as Signal, including deniability and Diffie-Hellman key ratcheting.
This volume aims to present a straightforward and easily accessible survey of the analytic theory of quadratic forms. Written at an elementary level, the book provides a sound basis from which the reader can study advanced works and undertake original research. Roughly half a century ago C.L. Siegel discovered a new type of automorphic forms in several variables in connection with his famous work on the analytic theory of quadratic forms. Since then Siegel modular forms have been studied extensively because of their significance in both automorphic functions in several complex variables and number theory. The comprehensive theory of automorphic forms to subgroups of algebraic groups and the recent arithmetical theory of modular forms illustrate these two aspects in an illuminating manner. The text is based on the author's lectures given over a number of years and is intended for a one semester graduate course, although it can serve equally well for self study . The only prerequisites are a knowledge of algebra, number theory and complex analysis.
The second volume of this work contains Parts 2 and 3 of the "Handbook of Coding Theory". Part 2, "Connections", is devoted to connections between coding theory and other branches of mathematics and computer science. Part 3, "Applications", deals with a variety of applications for coding.
Digital Signal Processing Algorithms describes computational number theory and its applications to deriving fast algorithms for digital signal processing. It demonstrates the importance of computational number theory in the design of digital signal processing algorithms and clearly describes the nature and structure of the algorithms themselves. The book has two primary focuses: first, it establishes the properties of discrete-time sequence indices and their corresponding fast algorithms; and second, it investigates the properties of the discrete-time sequences and the corresponding fast algorithms for processing these sequences.
"Oulines an array of recent work on the analytic theory and potential applications of continued fractions, linear functionals, orthogonal functions, moment theory, and integral transforms. Describes links between continued fractions. Pade approximation, special functions, and Gaussian quadrature."
Presents a systematic study of the common zeros of polynomials in several variables which are related to higher dimensional quadrature. The author uses a new approach which is based on the recent development of orthogonal polynomials in several variables and differs significantly from the previous ones based on algebraic ideal theory. Featuring a great deal of new work, new theorems and, in many cases, new proofs, this self-contained work will be of great interest to researchers in numerical analysis, the theory of orthogonal polynomials and related subjects.
This is an examination of number theory as it emerged in the 17th through to the 19th century, leading to an understanding of today's research problems on the basis of their historical evolution. The book introduces the reader to the mathematicians Fermat, Euler, Lagrange, Legendre and Gauss. It goes on to tackle advanced themes in this field, often dubbed the queen of mathematics.
This text aims to bridge the gap between non-mathematical popular treatments and the distinctly mathematical publications that non- mathematicians find so difficult to penetrate. The author provides understandable derivations or explanations of many key concepts, such as Kolmogrov-Sinai entropy, dimensions, Fourier analysis, and Lyapunov exponents. Only basic algebra, trigonometry, geometry and statistics are assumed as background. The author focuses on the most important topics, very much with the general scientist in mind.
Giving an easily accessible elementary introduction to the
algebraic theory of quadratic forms, this book covers both Witt's
theory and Pfister's theory of quadratic forms.
This monograph provides a self-contained presentation of the foundations of finite fields, including a detailed treatment of their algebraic closures. It also covers important advanced topics which are not yet found in textbooks: the primitive normal basis theorem, the existence of primitive elements in affine hyperplanes, and the Niederreiter method for factoring polynomials over finite fields. We give streamlined and/or clearer proofs for many fundamental results and treat some classical material in an innovative manner. In particular, we emphasize the interplay between arithmetical and structural results, and we introduce Berlekamp algebras in a novel way which provides a deeper understanding of Berlekamp's celebrated factorization algorithm. The book provides a thorough grounding in finite field theory for graduate students and researchers in mathematics. In view of its emphasis on applicable and computational aspects, it is also useful for readers working in information and communication engineering, for instance, in signal processing, coding theory, cryptography or computer science.
The aim of this book is to give a systematic exposition of results in some important cases where p-adic families and p-adic L-functions are studied. We first look at p-adic families in the following cases: general linear groups, symplectic groups and definite unitary groups. We also look at applications of this theory to modularity lifting problems. We finally consider p-adic L-functions for GL(2), the p-adic adjoint L-functions and some cases of higher GL(n).
This text provides a detailed introduction to number theory, demonstrating how other areas of mathematics enter into the study of the properties of natural numbers. It contains problem sets within each section and at the end of each chapter to reinforce essential concepts, and includes up-to-date information on divisibility problems, polynomial congruence, the sums of squares and trigonometric sums.;Five or more copies may be ordered by college or university bookstores at a special price, available on application.
This book is a collection of research papers and surveys on algebra that were presented at the Conference on Groups, Rings, and Group Rings held in Ubatuba, Brazil. This text familiarizes researchers with the latest topics, techniques, and methodologies in several branches of contemporary algebra. With extensive coverage, it examines broad themes from group theory and ring theory, exploring their relationship with other branches of algebra including actions of Hopf algebras, groups of units of group rings, combinatorics of Young diagrams, polynomial identities, growth of algebras, and more. Featuring international contributions, this book is ideal for mathematicians specializing in these areas.
The first thing you will find out about this book is that it is fun to read. It is meant for the browser, as well as for the student and for the specialist wanting to know about the area. The footnotes give an historical background to the text, in addition to providing deeper applications of the concept that is being cited. This allows the browser to look more deeply into the history or to pursue a given sideline. Those who are only marginally interested in the area will be able to read the text, pick up information easily, and be entertained at the same time by the historical and philosophical digressions. It is rich in structure and motivation in its concentration upon quadratic orders.
This proceedings volume convenes selected, peer-reviewed papers presented at the 3rd International Conference on Mathematics and its Applications in Science and Engineering - ICMASE 2022, which was held on July 4-7, 2022 by the Technical University of Civil Engineering of Bucharest, Romania. Works in this volume cover new developments in applications of mathematics in science and engineering, with emphasis on mathematical and computational modeling of real-world problems. Topics range from the use of differential equations to model mechanical structures to the employ of number theory in the development of information security and cryptography. Educational issues specific to the acquisition of mathematical competencies by engineering and science students at all university levels are also touched on. Researchers and university students are the natural audiences for this book, which can be equally appealing to practitioners seeking up-to-date techniques in mathematical applications to different contexts and disciplines.
Bridging the gap between elementary number theory and the systematic study of advanced topics, A Classical Introduction to Modern Number Theory is a well-developed and accessible text that requires only a familiarity with basic abstract algebra. Historical development is stressed throughout, along with wide-ranging coverage of significant results with comparatively elementary proofs, some of them new. An extensive bibliography and many challenging exercises are also included. This second edition has been corrected and contains two new chapters which provide a complete proof of the Mordell-Weil theorem for elliptic curves over the rational numbers, and an overview of recent progress on the arithmetic of elliptic curves. |
![]() ![]() You may like...
Information System Concepts - Towards a…
Eckhard D. Falkenberg, Wolfgang Hesse, …
Hardcover
R5,767
Discovery Miles 57 670
Measuring What We Do in Schools - How to…
Victoria L Bernhardt
Paperback
Optimizing Higher Education Learning…
Yukiko Inoue-Smith, Troy McVey
Hardcover
R5,916
Discovery Miles 59 160
Game-Based Assessment Revisited
Dirk Ifenthaler, Yoon Jeon Kim
Hardcover
R4,648
Discovery Miles 46 480
|