![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory > General
This volume contains almost all mathematical papers published between 1943 and 1984 of Igor R. Shafarevich. They appear in English translations (with two exceptions, which are in French and German), some of the papers have been translated into English especially for this edition. Notes by Shafarevich at the end of the volume contain corrections and remarks on the subsequent development of the subjects considered in the papers. Igor R. Shafarevich has made a big impact on mathematics. He has worked in the fields of algebra, algebraic number theory, algebraic geometry and arithmetic algebraic geometry. His papers reflect his broad interests and include topics such as the proof of the general reciprocity law, the realization of groups as Galois groups of number fields, class field towers, algebraic surfaces (in particular K3 surfaces), elliptic curves, and finiteness results on abelian varieties, algebraic curves over number fields and lie algebras.
This book contains a detailed account of the result of the author's recent Annals paper and JAMS paper on arithmetic invariant, including -invariant, L-invariant, and similar topics. This book can be regarded as an introductory text to the author's previous book p-Adic Automorphic Forms on Shimura Varieties. Written as a down-to-earth introduction to Shimura varieties, this text includes many examples and applications of the theory that provide motivation for the reader. Since it is limited to modular curves and the corresponding Shimura varieties, this book is not only a great resource for experts in the field, but it is also accessible to advanced graduate students studying number theory. Key topics include non-triviality of arithmetic invariants and special values of L-functions; elliptic curves over complex and p-adic fields; Hecke algebras; scheme theory; elliptic and modular curves over rings; and Shimura curves.
From July 25-August 6, 1966 a Summer School on Local Fields was held in Driebergen (the Netherlands), organized by the Netherlands Universities Foundation for International Cooperation (NUFFIC) with financial support from NATO. The scientific organizing Committl!e consisted ofF. VANDER BLIJ, A. H. M. LEVELT, A. F. MaNNA, J. P. MuRRE and T. A. SPRINGER. The Summer School was attended by approximately 80 mathematicians from various countries. The contributions collected in the present book are all based on the talks given at the Summer School. It is hoped that the book will serve the same purpose as the Summer School: to provide an introduction to current research in Local Fields and related topics. July 1967 T. A. SPRINGER Contents ARnN, M. and B. MAZUR: Homotopy of Varieties in the Etale Topology 1 BAss, H: The Congruence Subgroup Problem 16 BRUHAT, F. et J. TITs: Groupes algebriques simples sur un corps local . 23 CASSELS, J. W. S. : Elliptic Curves over Local Fields 37 DwoRK, B. : On the Rationality of Zeta Functions and L-Series 40 MaNNA, A. F. : Linear Topological Spaces over Non-Archimedean Valued Fields . 56 NERON, A. : Modeles minimaux des espaces principaux homo genes sur les courbes elliptiques 66 RAYNAUD, M. : Passage au quotient par une relation d'equivalence plate . 78 REMMERT, R. : Algebraische Aspekte in der nichtarchimedischen Analysis . 86 SERRE, J. -P. : Sur les groupes de Galois attaches aux groupes p-divisibles . 118 SWINNERTON-DYER, P. : The Conjectures of Birch and Swinnerton- Dyer, and of Tate . 132 TATE, J. T.
This is a reissue of a classic text previously published by the LMS, aimed at beginning postgraduate students in algebra and number theory. It gives a well-paced introduction to topics central to several active areas of mathematical research, and provides a very helpful background reference to researchers.
Hardy's Z-function, related to the Riemann zeta-function (s), was originally utilised by G. H. Hardy to show that (s) has infinitely many zeros of the form 1/2+it. It is now amongst the most important functions of analytic number theory, and the Riemann hypothesis, that all complex zeros lie on the line 1/2+it, is perhaps one of the best known and most important open problems in mathematics. Today Hardy's function has many applications; among others it is used for extensive calculations regarding the zeros of (s). This comprehensive account covers many aspects of Z(t), including the distribution of its zeros, Gram points, moments and Mellin transforms. It features an extensive bibliography and end-of-chapter notes containing comments, remarks and references. The book also provides many open problems to stimulate readers interested in further research.
Developed from the author's popular text, A Concise Introduction to the Theory of Numbers, this book provides a comprehensive initiation to all the major branches of number theory. Beginning with the rudiments of the subject, the author proceeds to more advanced topics, including elements of cryptography and primality testing, an account of number fields in the classical vein including properties of their units, ideals and ideal classes, aspects of analytic number theory including studies of the Riemann zeta-function, the prime-number theorem and primes in arithmetical progressions, a description of the Hardy-Littlewood and sieve methods from respectively additive and multiplicative number theory and an exposition of the arithmetic of elliptic curves. The book includes many worked examples, exercises and further reading. Its wider coverage and versatility make this book suitable for courses extending from the elementary to beginning graduate studies.
In recent years, research in K3 surfaces and Calabi-Yau varieties has seen spectacular progress from both arithmetic and geometric points of view, which in turn continues to have a huge influence and impact in theoretical physics-in particular, in string theory. The workshop on Arithmetic and Geometry of K3 surfaces and Calabi-Yau threefolds, held at the Fields Institute (August 16-25, 2011), aimed to give a state-of-the-art survey of these new developments. This proceedings volume includes a representative sampling of the broad range of topics covered by the workshop. While the subjects range from arithmetic geometry through algebraic geometry and differential geometry to mathematical physics, the papers are naturally related by the common theme of Calabi-Yau varieties. With the big variety of branches of mathematics and mathematical physics touched upon, this area reveals many deep connections between subjects previously considered unrelated. Unlike most other conferences, the 2011 Calabi-Yau workshop started with 3 days of introductory lectures. A selection of 4 of these lectures is included in this volume. These lectures can be used as a starting point for the graduate students and other junior researchers, or as a guide to the subject.
Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. In particular their finer distribution is closely connected with the Riemann hypothesis, the most important unsolved problem in the mathematical world. Assuming only subjects covered in a standard degree in mathematics, the authors comprehensively cover all the topics met in first courses on multiplicative number theory and the distribution of prime numbers. They bring their extensive and distinguished research expertise to bear in preparing the student for intelligent reading of the more advanced research literature. This 2006 text, which is based on courses taught successfully over many years at Michigan, Imperial College and Pennsylvania State, is enriched by comprehensive historical notes and references as well as over 500 exercises.
After Pyatetski-Shapiro [PSI] and Satake [Sal] introduced, independent of one another, an early form of the Jacobi Theory in 1969 (while not naming it as such), this theory was given a definite push by the book The Theory of Jacobi Forms by Eichler and Zagier in 1985. Now, there are some overview articles describing the developments in the theory of the Jacobi group and its automor- phic forms, for instance by Skoruppa [Sk2], Berndt [Be5] and Kohnen [Ko]. We refer to these for more historical details and many more names of authors active in this theory, which stretches now from number theory and algebraic geometry to theoretical physics. But let us only briefly indicate several - sometimes very closely related - topics touched by Jacobi theory as we see it: * fields of meromorphic and rational functions on the universal elliptic curve resp. universal abelian variety * structure and projective embeddings of certain algebraic varieties and homogeneous spaces * correspondences between different kinds of modular forms * L-functions associated to different kinds of modular forms and autom- phic representations * induced representations * invariant differential operators * structure of Hecke algebras * determination of generalized Kac-Moody algebras and as a final goal related to the here first mentioned * mixed Shimura varieties and mixed motives.
This book presents state-of-the-art research on the distribution modulo one of sequences of integral powers of real numbers and related topics. Most of the results have never before appeared in one book and many of them were proved only during the last decade. Topics covered include the distribution modulo one of the integral powers of 3/2 and the frequency of occurrence of each digit in the decimal expansion of the square root of two. The author takes a point of view from combinatorics on words and introduces a variety of techniques, including explicit constructions of normal numbers, Schmidt's games, Riesz product measures and transcendence results. With numerous exercises, the book is ideal for graduate courses on Diophantine approximation or as an introduction to distribution modulo one for non-experts. Specialists will appreciate the inclusion of over 50 open problems and the rich and comprehensive bibliography of over 700 references.
This two-part volume contains numerous examples and insights on various topics. The authors have taken pains to present the material rigorously and coherently. This book will be immensely useful to mathematicians and graduate students working in algebraic geometry, arithmetic algebraic geometry, complex analysis and related fields.
Partitions, q-Series, and Modular Forms contains a collection of research and survey papers that grew out of a Conference on Partitions, q-Series and Modular Forms at the University of Florida, Gainesville in March 2008. It will be of interest to researchers and graduate students that would like to learn of recent developments in the theory of q-series and modular and how it relates to number theory, combinatorics and special functions.
This innovative textbook introduces a new pattern-based approach to learning proof methods in the mathematical sciences. Readers will discover techniques that will enable them to learn new proofs across different areas of pure mathematics with ease. The patterns in proofs from diverse fields such as algebra, analysis, topology and number theory are explored. Specific topics examined include game theory, combinatorics and Euclidean geometry, enabling a broad familiarity. The author, an experienced lecturer and researcher renowned for his innovative view and intuitive style, illuminates a wide range of techniques and examples from duplicating the cube to triangulating polygons to the infinitude of primes to the fundamental theorem of algebra. Intended as a companion for undergraduate students, this text is an essential addition to every aspiring mathematician's toolkit.
Srinivasa Ramanujan was a mathematician brilliant beyond comparison who inspired many great mathematicians. There is extensive literature available on the work of Ramanujan. But what is missing in the literature is an analysis that would place his mathematics in context and interpret it in terms of modern developments. The 12 lectures by Hardy, delivered in 1936, served this purpose at the time they were given. This book presents Ramanujan's essential mathematical contributions and gives an informal account of some of the major developments that emanated from his work in the 20th and 21st centuries. It contends that his work still has an impact on many different fields of mathematical research. This book examines some of these themes in the landscape of 21st-century mathematics. These essays, based on the lectures given by the authors focus on a subset of Ramanujan's significant papers and show how these papers shaped the course of modern mathematics.
Total Domination in Graphs gives a clear understanding of this topic to any interested reader who has a modest background in graph theory. This book provides and explores the fundamentals of total domination in graphs. Some of the topics featured include the interplay between total domination in graphs and transversals in hypergraphs, and the association with total domination in graphs and diameter-2-critical graphs. Several proofs are included in this text which enables readers to acquaint themselves with a toolbox of proof techniques and ideas with which to attack open problems in the field. This work is an excellent resource for students interested in beginning their research in this field. Additionally, established researchers will find the book valuable to have as it contains the latest developments and open problems.
Tamari lattices originated from weakenings or reinterpretations of the familar associativity law. This has been the subject of Dov Tamari's thesis at the Sorbonne in Paris in 1951 and the central theme of his subsequent mathematical work. Tamari lattices can be realized in terms of polytopes called associahedra, which in fact also appeared first in Tamari's thesis. By now these beautiful structures have made their appearance in many different areas of pure and applied mathematics, such as algebra, combinatorics, computer science, category theory, geometry, topology, and also in physics. Their interdisciplinary nature provides much fascination and value. On the occasion of Dov Tamari's centennial birthday, this book provides an introduction to topical research related to Tamari's work and ideas. Most of the articles collected in it are written in a way accessible to a wide audience of students and researchers in mathematics and mathematical physics and are accompanied by high quality illustrations.
In 1996 the AMS awarded Goro Shimura the Steele Prize for Lifetime Achievement: "To Goro Shimura for his important and extensive work on arithmetical geometry and automorphic forms; concepts introduced by him were often seminal, and fertile ground for new developments, as witnessed by the many notations in number theory that carry his name and that have long been familiar to workers in the field." 103 of Shimuras most important papers are collected in four volumes. Volume IV contains his mathematical papers from 1989 to 2001 and some notes to the articles.
The impact and influence of J.-P. Serres work have been notable ever since his doctoral thesis on homotopy groups. The abundance of findings and deep insights found in his research and survey papers ranging from topology, several complex variables, and algebraic geometry to number theory, group theory, commutative algebra and modular forms, continues to provide inspiring reading for mathematicians working in these areas, in their research and their teaching. Characteristic of Serres publications are the many open questions he formulates pointing to further directions for research. In four volumes of Collected Papers he has provided comments on and corrections to most articles, and described the current status of the open questions with reference to later findings. In this softcover edition of volume IV, two recently published articles have been added, one on the life and works of Andre Weil, the other one on Finite Subgroups of Lie Groups. "From the reviews: " "This is the fourth volume of J-P. Serre's "Collected Papers" covering the period 1985-1998. Items, numbered 133-173, contain "the essence'' of his work from that period and are devoted to number theory, algebraic geometry, and group theory. Half of them are articles and another half are summaries of his courses in those years and letters. Most courses have never been previously published, nor proofs of the announced results. The letters reproduced, however (in particular to K. Ribet and M.-F. Vigneras), provide indications of some of those proofs. Also included is an interview with J-P. Serre from 1986, revealing his views on mathematics (with the stress upon its integrity) and his own mathematical activity. The volume ends with Notes which complete the text by reporting recent progress and occasionally correct it. "Zentralblatt MATH" "
The impact and influence of Jean-Pierre Serre's work have been notable ever since his doctoral thesis on homotopy groups. The abundance of significant results and deep insight contained in his research and survey papers ranging through topology, several complex variables, and algebraic geometry to number theory, group theory, commutative algebra and modular forms, continues to provide inspiring reading for mathematicians working in these areas, in their research and their teaching. Characteristic of Serre's publications are the many open questions he formulated suggesting further research directions. Four volumes specify how he has provided comments on and corrections to most articles, and described the present status of the open questions with reference to later results. Jean-Pierre Serre is one of a few mathematicians to have won the Fields medal, the Abel prize, and the Wolf prize.
The study of arithmetic differential operators is a novel and promising area of mathematics. This complete introduction to the subject starts with the basics: a discussion of p-adic numbers and some of the classical differential analysis on the field of p-adic numbers leading to the definition of arithmetic differential operators on this field. Buium's theory of arithmetic jet spaces is then developed succinctly in order to define arithmetic operators in general. Features of the book include a comparison of the behaviour of these operators over the p-adic integers and their behaviour over the unramified completion, and a discussion of the relationship between characteristic functions of p-adic discs and arithmetic differential operators that disappears as soon as a single root of unity is adjoined to the p-adic integers. This book is essential reading for researchers and graduate students who want a first introduction to arithmetic differential operators over the p-adic integers.
The book provides a self-contained introduction to classical Number Theory. All the proofs of the individual theorems and the solutions of the exercises are being presented step by step. Some historical remarks are also presented. The book will be directed to advanced undergraduate, beginning graduate students as well as to students who prepare for mathematical competitions (ex. Mathematical Olympiads and Putnam Mathematical competition).
The impact and influence of Jean-Pierre Serre's work have been notable ever since his doctoral thesis on homotopy groups. The abundance of significant results and deep insight contained in his research and survey papers ranging through topology, several complex variables, and algebraic geometry to number theory, group theory, commutative algebra and modular forms, continues to provide inspiring reading for mathematicians working in these areas, in their research and their teaching. Characteristic of Serre's publications are the many open questions he formulated suggesting further research directions. Four volumes specify how he has provided comments on and corrections to most articles, and described the present status of the open questions with reference to later results. Jean-Pierre Serre is one of a few mathematicians to have won the Fields medal, the Abel prize, and the Wolf prize.
"Still waters run deep." This proverb expresses exactly how a mathematician Akihito Uchiyama and his works were. He was not celebrated except in the field of harmonic analysis, and indeed he never wanted that. He suddenly passed away in summer of 1997 at the age of 48. However, nowadays his contributions to the fields of harmonic analysis and real analysis are permeating through various fields of analysis deep and wide. One could write several papers explaining his contributions and how they have been absorbed into these fields, developed, and used in further breakthroughs. Peter W. Jones (Professor of Yale University) says in his special contribution to this book that Uchiyama's decomposition of BMO functions is considered to be the Mount Everest of Hardy space theory. This book is based on the draft, which the author Akihito Uchiyama had completed by 1990. It deals with the theory of real Hardy spaces on the n-dimensional Euclidean space. Here the author explains scrupulously some of important results on Hardy spaces by real-variable methods, in particular, the atomic decomposition of elements in Hardy spaces and his constructive proof of the Fefferman-Stein decomposition of BMO functions into the sum of a bounded?function and Riesz transforms of bounded functions.
This is a collection of Harald Cramer's extensive works on number theory, probability, mathematical statistics and insurance mathematics. Many of these are not easily found nowadays in their original sources, for instance his pioneering works on risk theory published in jubilee volumes of the Skandia Insurance Company in 1930 and 1955. Despite their age, these eminent examples of Cramer's expository style remain highly readable. Cramer (Stockholm 1893-1985) was one of the "fathers" of modern mathematical statistics. His famous book on the subject is still an important reference. His statistical papers included here were seminal to the subsequent development of the subject. The collection includes a complete bibliography of Cramer's work. |
You may like...
Recent Progress On Topics Of Ramanujan…
Helmut Maier, Laszlo Toth, …
Hardcover
R1,670
Discovery Miles 16 700
|