![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory > General
In the modern age of almost universal computer usage, practically every individual in a technologically developed society has routine access to the most up-to-date cryptographic technology that exists, the so-called RSA public-key cryptosystem. A major component of this system is the factorization of large numbers into their primes. Thus an ancient number-theory concept now plays a crucial role in communication among millions of people who may have little or no knowledge of even elementary mathematics. The independent structure of each chapter of the book makes it highly readable for a wide variety of mathematicians, students of applied number theory, and others interested in both study and research in number theory and cryptography.
A beautiful and relatively elementary account of a part of mathematics where three main fields - algebra, analysis and geometry - meet. The book provides a broad view of these subjects at the level of calculus, without being a calculus book. Its roots are in arithmetic and geometry, the two opposite poles of mathematics, and the source of historic conceptual conflict. The resolution of this conflict, and its role in the development of mathematics, is one of the main stories in the book. Stillwell has chosen an array of exciting and worthwhile topics and elegantly combines mathematical history with mathematics. He covers the main ideas of Euclid, but with 2000 years of extra insights attached. Presupposing only high school algebra, it can be read by any well prepared student entering university. Moreover, this book will be popular with graduate students and researchers in mathematics due to its attractive and unusual treatment of fundamental topics. A set of well-written exercises at the end of each section allows new ideas to be instantly tested and reinforced.
Recent Developments in Infinite-Dimensional Analysis and Quantum Probability is dedicated to Professor Takeyuki Hida on the occasion of his 70th birthday. The book is more than a collection of articles. In fact, in it the reader will find a consistent editorial work, devoted to attempting to obtain a unitary picture from the different contributions and to give a comprehensive account of important recent developments in contemporary white noise analysis and some of its applications. For this reason, not only the latest results, but also motivations, explanations and connections with previous work have been included. The wealth of applications, from number theory to signal processing, from optimal filtering to information theory, from the statistics of stationary flows to quantum cable equations, show the power of white noise analysis as a tool. Beyond these, the authors emphasize its connections with practically all branches of contemporary probability, including stochastic geometry, the structure theory of stationary Gaussian processes, Neumann boundary value problems, and large deviations.
For many years, Serge Lang has given talks on selected items in mathematics which could be extracted at a level understandable by those who have had calculus. Written in a conversational tone, Lang now presents a collection of those talks as a book covering such topics as: prime numbers, the abc conjecture, approximation theorems of analysis, Bruhat-Tits spaces, and harmonic and symmetric polynomials. Each talk is written in a lively and informal style meant to engage any reader looking for further insight into mathematics.
Number theory, the branch of mathematics that studies the properties of the integers, is a repository of interesting and quite varied problems, sometimes impossibly difficult ones. In this book, the authors have gathered together a collection of problems from various topics in number theory that they find beautiful, intriguing, and from a certain point of view instructive.
This text originated as a lecture delivered November 20, 1984, at Queen's University, in the undergraduate colloquium senes. In another colloquium lecture, my colleague Morris Orzech, who had consulted the latest edition of the Guinness Book of Records, reminded me very gently that the most "innumerate" people of the world are of a certain trible in Mato Grosso, Brazil. They do not even have a word to express the number "two" or the concept of plurality. "Yes, Morris, I'm from Brazil, but my book will contain numbers different from *one.''' He added that the most boring 800-page book is by two Japanese mathematicians (whom I'll not name) and consists of about 16 million decimal digits of the number Te. "I assure you, Morris, that in spite of the beauty of the appar ent randomness of the decimal digits of Te, I'll be sure that my text will include also some words." And then I proceeded putting together the magic combina tion of words and numbers, which became The Book of Prime Number Records. If you have seen it, only extreme curiosity could impel you to have this one in your hands. The New Book of Prime Number Records differs little from its predecessor in the general planning. But it contains new sections and updated records.
Most people tend to view number theory as the very paradigm of pure mathematics. With the advent of computers, however, number theory has been finding an increasing number of applications in practical settings, such as in cryptography, random number generation, coding theory, and even concert hall acoustics. Yet other applications are still emerging - providing number theorists with some major new areas of opportunity. The 1996 IMA summer program on Emerging Applications of Number Theory was aimed at stimulating further work with some of these newest (and most attractive) applications. Concentration was on number theory's recent links with: (a) wave phenomena in quantum mechanics (more specifically, quantum chaos); and (b) graph theory (especially expander graphs and related spectral theory). This volume contains the contributed papers from that meeting and will be of interest to anyone intrigued by novel applications of modern number-theoretical techniques.
Rigid (analytic) spaces were invented to describe degenerations, reductions, and moduli of algebraic curves and abelian varieties. This work, a revised and greatly expanded new English edition of an earlier French text by the same authors, presents important new developments and applications of the theory of rigid analytic spaces to abelian varieties, "points of rigid spaces," etale cohomology, Drinfeld modular curves, and Monsky-Washnitzer cohomology. The exposition is concise, self-contained, rich in examples and exercises, and will serve as an excellent graduate-level text for the classroom or for self-study."
This self-contained text presents quantum mechanics from the point of view of some computational examples with a mixture of mathematical clarity often not found in texts offering only a purely physical point of view. Emphasis is placed on the systematic application of the Nikiforov-- Uvarov theory of generalized hypergeometric differential equations to solve the Schr"dinger equation and to obtain the quantization of energies from a single unified point of view.
This easy-to-read 2010 book demonstrates how a simple geometric idea reveals fascinating connections and results in number theory, the mathematics of polyhedra, combinatorial geometry, and group theory. Using a systematic paper-folding procedure it is possible to construct a regular polygon with any number of sides. This remarkable algorithm has led to interesting proofs of certain results in number theory, has been used to answer combinatorial questions involving partitions of space, and has enabled the authors to obtain the formula for the volume of a regular tetrahedron in around three steps, using nothing more complicated than basic arithmetic and the most elementary plane geometry. All of these ideas, and more, reveal the beauty of mathematics and the interconnectedness of its various branches. Detailed instructions, including clear illustrations, enable the reader to gain hands-on experience constructing these models and to discover for themselves the patterns and relationships they unearth.
Spencer Bloch's 1979 Duke lectures, a milestone in modern mathematics, have been out of print almost since their first publication in 1980, yet they have remained influential and are still the best place to learn the guiding philosophy of algebraic cycles and motives. This edition, now professionally typeset, has a new preface by the author giving his perspective on developments in the field over the past 30 years. The theory of algebraic cycles encompasses such central problems in mathematics as the Hodge conjecture and the Bloch-Kato conjecture on special values of zeta functions. The book begins with Mumford's example showing that the Chow group of zero-cycles on an algebraic variety can be infinite-dimensional, and explains how Hodge theory and algebraic K-theory give new insights into this and other phenomena.
This volume contains the refereed proceedings of the Workshop on Cryptography and Computational Number Theory, CCNT'99, which has been held in Singapore during the week of November 22-26, 1999. The workshop was organized by the Centre for Systems Security of the Na tional University of Singapore. We gratefully acknowledge the financial support from the Singapore National Science and Technology Board under the grant num ber RP960668/M. The idea for this workshop grew out of the recognition of the recent, rapid development in various areas of cryptography and computational number the ory. The event followed the concept of the research programs at such well-known research institutions as the Newton Institute (UK), Oberwolfach and Dagstuhl (Germany), and Luminy (France). Accordingly, there were only invited lectures at the workshop with plenty of time for informal discussions. It was hoped and successfully achieved that the meeting would encourage and stimulate further research in information and computer security as well as in the design and implementation of number theoretic cryptosystems and other related areas. Another goal of the meeting was to stimulate collaboration and more active interaction between mathematicians, computer scientists, practical cryptographers and engineers in academia, industry and government."
Ernst Witt, 1911-1991, was one of the most ingenious mathematicians of this century and has decisively shaped the development of various mathematical fields like algebra, number theory, group theory, combinatorics and Lie theory. This volume offers a complete collection of Witt's research papers; it also contains never before published articles, facsimiles and photos. Commentary by other authors provide an excellent survey on the further development of these mathematical fields.
This book is, on the one hand, a pedagogical introduction to the formalism of slopes, of semi-stability and of related concepts in the simplest possible context. It is therefore accessible to any graduate student with a basic knowledge in algebraic geometry and algebraic groups. On the other hand, the book also provides a thorough introduction to the basics of period domains, as they appear in the geometric approach to local Langlands correspondences and in the recent conjectural p-adic local Langlands program. The authors provide numerous worked examples and establish many connections to topics in the general area of algebraic groups over finite and local fields. In addition, the end of each section includes remarks on open questions, historical context and references to the literature.
It is gratifying that this textbook is still sufficiently popular to warrant a third edition. I have used the opportunity to improve and enlarge the book. When the second edition was prepared, only two pages on algebraic geometry codes were added. These have now been removed and replaced by a relatively long chapter on this subject. Although it is still only an introduction, the chapter requires more mathematical background of the reader than the remainder of this book. One of the very interesting recent developments concerns binary codes defined by using codes over the alphabet 7l.4 There is so much interest in this area that a chapter on the essentials was added. Knowledge of this chapter will allow the reader to study recent literature on 7l. -codes. 4 Furthermore, some material has been added that appeared in my Springer Lec ture Notes 201, but was not included in earlier editions of this book, e. g. Generalized Reed-Solomon Codes and Generalized Reed-Muller Codes. In Chapter 2, a section on "Coding Gain" ( the engineer's justification for using error-correcting codes) was added. For the author, preparing this third edition was a most welcome return to mathematics after seven years of administration. For valuable discussions on the new material, I thank C.P.l.M.Baggen, I. M.Duursma, H.D.L.Hollmann, H. C. A. van Tilborg, and R. M. Wilson. A special word of thanks to R. A. Pellikaan for his assistance with Chapter 10."
The history of continued fractions is certainly one of the longest among those of mathematical concepts, since it begins with Euclid's algorithm for the great est common divisor at least three centuries B.C. As it is often the case and like Monsieur Jourdain in Moliere's "Ie bourgeois gentilhomme" (who was speak ing in prose though he did not know he was doing so), continued fractions were used for many centuries before their real discovery. The history of continued fractions and Pade approximants is also quite im portant, since they played a leading role in the development of some branches of mathematics. For example, they were the basis for the proof of the tran scendence of 11' in 1882, an open problem for more than two thousand years, and also for our modern spectral theory of operators. Actually they still are of great interest in many fields of pure and applied mathematics and in numerical analysis, where they provide computer approximations to special functions and are connected to some convergence acceleration methods. Con tinued fractions are also used in number theory, computer science, automata, electronics, etc ..."
We dedicate this volume to Professor Parimala on the occasion of her 60th birthday. It contains a variety of papers related to the themes of her research. Parimala's rst striking result was a counterexample to a quadratic analogue of Serre's conjecture (Bulletin of the American Mathematical Society, 1976). Her in uence has cont- ued through her tenure at the Tata Institute of Fundamental Research in Mumbai (1976-2006),and now her time at Emory University in Atlanta (2005-present). A conference was held from 30 December 2008 to 4 January 2009, at the U- versity of Hyderabad, India, to celebrate Parimala's 60th birthday (see the conf- ence's Web site at http://mathstat.uohyd.ernet.in/conf/quadforms2008). The or- nizing committee consisted of J.-L. Colliot-Thel ' en ' e, Skip Garibaldi, R. Sujatha, and V. Suresh. The present volume is an outcome of this event. We would like to thank all the participants of the conference, the authors who have contributed to this volume, and the referees who carefully examined the s- mitted papers. We would also like to thank Springer-Verlag for readily accepting to publish the volume. In addition, the other three editors of the volume would like to place on record their deep appreciation of Skip Garibaldi's untiring efforts toward the nal publication.
Finslerian Laplacians have arisen from the demands of modelling the modern world. However, the roots of the Laplacian concept can be traced back to the sixteenth century. Its phylogeny and history are presented in the Prologue of this volume. The text proper begins with a brief introduction to stochastically derived Finslerian Laplacians, facilitated by applications in ecology, epidemiology and evolutionary biology. The mathematical ideas are then fully presented in section II, with generalizations to Lagrange geometry following in section III. With section IV, the focus abruptly shifts to the local mean-value approach to Finslerian Laplacians and a Hodge-de Rham theory is developed for the representation on real cohomology classes by harmonic forms on the base manifold. Similar results are proved in sections II and IV, each from different perspectives. Modern topics treated include nonlinear Laplacians, Bochner and Lichnerowicz vanishing theorems, Weitzenbock formulas, and Finslerian spinors and Dirac operators. The tools developed in this book will find uses in several areas of physics and engineering, but especially in the mechanics of inhomogeneous media, e.g. Cofferat continua. Audience: This text will be of use to workers in stochastic processes, differential geometry, nonlinear analysis, epidemiology, ecology and evolution, as well as physics of the solid state and continua."
The articles in this volume are an outgrowth of an International Confer- ence in Intersection Theory that took place in Bologna, Italy (December 1997). In a somewhat unorthodox format aimed at both the mathematical community as well as summer school students, talks were research-oriented as well as partly expository. There were four series of expository talks by the following people: M. Brion, University of Grenoble, on Equivariant Chow groups and applications; H. Flenner, University of Bochum, on Joins and intersections; E. M. Friedlander, Northwestern University, on Intersection products for spaces of algebraic cycles; R. Laterveer, University of Strasbourg, on Bigraded Chow (co)homology. Four introductory papers cover the following topics and bring the reader to the forefront of research: 1) the excess intersection algorithm of Stuckrad and Vogel, combined with the deformation to the normal cone, together with many of its geo- metric applications; 2) new and very important homotopy theory techniques that are now used in intersection theory; 3) the Bloch-Beilinson filtration and the theory of motives; 4) algebraic stacks, the modern language of moduli theory. Other research articles concern such active fields as stable maps and Gromov-Witten invariants, deformation theory of complex varieties, and others. Organizers of the conference were Rudiger Achilles, Mirella Manaresi, and Angelo Vistoli, all from the University of Bologna; the scientific com- mittee consisted of Geir Ellingsrud, University of Oslo, William Fulton, University of Michigan at Ann Arbor, and Angelo Vistoli. The conference was financed by the European Union (contract no.
A new edition of a classical treatment of elliptic and modular functions with some of their number-theoretic applications, this text offers an updated bibliography and an alternative treatment of the transformation formula for the Dedekind eta function. It covers many topics, such as Hecke's theory of entire forms with multiplicative Fourier coefficients, and the last chapter recounts Bohr's theory of equivalence of general Dirichlet series.
Kummer's work on cyclotomic fields paved the way for the development of algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert, Takagi, Artin and others. However, the success of this general theory has tended to obscure special facts proved by Kummer about cyclotomic fields which lie deeper than the general theory. For a long period in the 20th century this aspect of Kummer's work seems to have been largely forgotten, except for a few papers, among which are those by Pollaczek [Po], Artin-Hasse [A-H] and Vandiver [Va]. In the mid 1950's, the theory of cyclotomic fields was taken up again by Iwasawa and Leopoldt. Iwasawa viewed cyclotomic fields as being analogues for number fields of the constant field extensions of algebraic geometry, and wrote a great sequence of papers investigating towers of cyclotomic fields, and more generally, Galois extensions of number fields whose Galois group is isomorphic to the additive group of p-adic integers. Leopoldt concentrated on a fixed cyclotomic field, and established various p-adic analogues of the classical complex analytic class number formulas. In particular, this led him to introduce, with Kubota, p-adic analogues of the complex L-functions attached to cyclotomic extensions of the rationals. Finally, in the late 1960's, Iwasawa [Iw 11] made the fundamental discovery that there was a close connection between his work on towers of cyclotomic fields and these p-adic L-functions of Leopoldt - Kubota.
A relaxed and informal presentation conveying the joy of mathematical discovery and insight. Frequent questions lead readers to see mathematics as an accessible world of thought, where understanding can turn opaque formulae into beautiful and meaningful ideas. The text presents eight topics that illustrate the unity of mathematical thought as well as the diversity of mathematical ideas. Drawn from both "pure" and "applied" mathematics, they include: spirals in nature and in mathematics; the modern topic of fractals and the ancient topic of Fibonacci numbers; Pascals Triangle and paper folding; modular arithmetic and the arithmetic of the infinite. The final chapter presents some ideas about how mathematics should be done, and hence, how it should be taught. Presenting many recent discoveries that lead to interesting open questions, the book can serve as the main text in courses dealing with contemporary mathematical topics or as enrichment for other courses. It can also be read with pleasure by anyone interested in the intellectually intriguing aspects of mathematics.
This book is divided into two parts. The first part is preliminary and consists of algebraic number theory and the theory of semisimple algebras. There are two principal topics: classification of quadratic forms and quadratic Diophantine equations. The second topic is a new framework which contains the investigation of Gauss on the sums of three squares as a special case. To make the book concise, the author proves some basic theorems in number theory only in some special cases. However, the book is self-contained when the base field is the rational number field, and the main theorems are stated with an arbitrary number field as the base field. So the reader familiar with class field theory will be able to learn the arithmetic theory of quadratic forms with no further references.
Award-winning monograph of the Ferran Sunyer i Balaguer Prize 2001. Subgroup growth studies the distribution of subgroups of finite index in a group as a function of the index. In the last two decades this topic has developed into one of the most active areas of research in infinite group theory; this book is a systematic and comprehensive account of the substantial theory which has emerged. As well as determining the range of possible 'growth types', for finitely generated groups in general and for groups in particular classes such as linear groups, a main focus of the book is on the tight connection between the subgroup growth of a group and its algebraic structure. A wide range of mathematical disciplines play a significant role in this work: as well as various aspects of infinite group theory, these include finite simple groups and permutation groups, profinite groups, arithmetic groups and Strong Approximation, algebraic and analytic number theory, probability, and p-adic model theory. Relevant aspects of such topics are explained in self-contained 'windows'.
This is a self-contained 2010 account of the state of the art in classical complex multiplication that includes recent results on rings of integers and applications to cryptography using elliptic curves. The author is exhaustive in his treatment, giving a thorough development of the theory of elliptic functions, modular functions and quadratic number fields and providing a concise summary of the results from class field theory. The main results are accompanied by numerical examples, equipping any reader with all the tools and formulas they need. Topics covered include: the construction of class fields over quadratic imaginary number fields by singular values of the modular invariant j and Weber's tau-function; explicit construction of rings of integers in ray class fields and Galois module structure; the construction of cryptographically relevant elliptic curves over finite fields; proof of Berwick's congruences using division values of the Weierstrass p-function; relations between elliptic units and class numbers. |
You may like...
Recent Progress On Topics Of Ramanujan…
Helmut Maier, Laszlo Toth, …
Hardcover
R1,670
Discovery Miles 16 700
Geometric and Harmonic Analysis on…
Ali Baklouti, Takaaki Nomura
Hardcover
R2,671
Discovery Miles 26 710
Geometry, Algebra, Number Theory, and…
Amir Akbary, Sanoli Gun
Hardcover
R4,104
Discovery Miles 41 040
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
|