0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (56)
  • R250 - R500 (62)
  • R500+ (1,708)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Mathematics > Number theory > General

Limit Theorems for the Riemann Zeta-Function (Paperback, Softcover reprint of hardcover 1st ed. 1996): Antanas Laurincikas Limit Theorems for the Riemann Zeta-Function (Paperback, Softcover reprint of hardcover 1st ed. 1996)
Antanas Laurincikas
R4,246 Discovery Miles 42 460 Ships in 18 - 22 working days

The subject of this book is probabilistic number theory. In a wide sense probabilistic number theory is part of the analytic number theory, where the methods and ideas of probability theory are used to study the distribution of values of arithmetic objects. This is usually complicated, as it is difficult to say anything about their concrete values. This is why the following problem is usually investigated: given some set, how often do values of an arithmetic object get into this set? It turns out that this frequency follows strict mathematical laws. Here we discover an analogy with quantum mechanics where it is impossible to describe the chaotic behaviour of one particle, but that large numbers of particles obey statistical laws. The objects of investigation of this book are Dirichlet series, and, as the title shows, the main attention is devoted to the Riemann zeta-function. In studying the distribution of values of Dirichlet series the weak convergence of probability measures on different spaces (one of the principle asymptotic probability theory methods) is used. The application of this method was launched by H. Bohr in the third decade of this century and it was implemented in his works together with B. Jessen. Further development of this idea was made in the papers of B. Jessen and A. Wintner, V. Borchsenius and B.

Many Rational Points - Coding Theory and Algebraic Geometry (Paperback, 1st ed. Softcover of orig. ed. 2004): N. E. Hurt Many Rational Points - Coding Theory and Algebraic Geometry (Paperback, 1st ed. Softcover of orig. ed. 2004)
N. E. Hurt
R2,672 Discovery Miles 26 720 Ships in 18 - 22 working days

2 Triangle Groups: An Introduction 279 3 Elementary Shimura Curves 281 4 Examples of Shimura Curves 282 5 Congruence Zeta Functions 283 6 Diophantine Properties of Shimura Curves 284 7 Klein Quartic 285 8 Supersingular Points 289 Towers of Elkies 9 289 7. CRYPTOGRAPHY AND APPLICATIONS 291 1 Introduction 291 Discrete Logarithm Problem 2 291 Curves for Public-Key Cryptosystems 3 295 Hyperelliptic Curve Cryptosystems 4 297 CM-Method 5 299 6 Cryptographic Exponent 300 7 Constructive Descent 302 8 Gaudry and Harley Algorithm 306 9 Picard Jacobians 307 Drinfeld Module Based Public Key Cryptosystems 10 308 11 Drinfeld Modules and One Way Functions 308 12 Shimura's Map 309 13 Modular Jacobians of Genus 2 Curves 310 Modular Jacobian Surfaces 14 312 15 Modular Curves of Genus Two 313 16 Hecke Operators 314 8. REFERENCES 317 345 Index Xll Preface The history of counting points on curves over finite fields is very ex- tensive, starting with the work of Gauss in 1801 and continuing with the work of Artin, Schmidt, Hasse and Weil in their study of curves and the related zeta functions Zx(t), where m Zx(t) = exp (2: N t ) m m 2': 1 m with N = #X(F qm). If X is a curve of genus g, Weil's conjectures m state that L(t) Zx(t) = (1 - t)(l - qt) where L(t) = rr~!l (1 - O'.

Diophantine Approximation on Linear Algebraic Groups - Transcendence Properties of the Exponential Function in Several... Diophantine Approximation on Linear Algebraic Groups - Transcendence Properties of the Exponential Function in Several Variables (Paperback, Softcover reprint of hardcover 1st ed. 2000)
Michel Waldschmidt
R2,752 Discovery Miles 27 520 Ships in 18 - 22 working days

The theory of transcendental numbers is closely related to the study of diophantine approximation. This book deals with values of the usual exponential function ez: a central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. Two chapters provide complete and simplified proofs of zero estimates (due to Philippon) on linear algebraic groups.

Analytic and Elementary Number Theory - A Tribute to Mathematical Legend Paul Erdos (Paperback, Softcover reprint of hardcover... Analytic and Elementary Number Theory - A Tribute to Mathematical Legend Paul Erdos (Paperback, Softcover reprint of hardcover 1st ed. 1998)
Krishnaswami Alladi, P.D.T.A. Elliott, Andrew Granville, G. Tenenbaum
R2,654 Discovery Miles 26 540 Ships in 18 - 22 working days

This volume contains a collection of papers in Analytic and Elementary Number Theory in memory of Professor Paul Erd s, one of the greatest mathematicians of this century. Written by many leading researchers, the papers deal with the most recent advances in a wide variety of topics, including arithmetical functions, prime numbers, the Riemann zeta function, probabilistic number theory, properties of integer sequences, modular forms, partitions, and q-series. Audience: Researchers and students of number theory, analysis, combinatorics and modular forms will find this volume to be stimulating.

Finite Fields: Theory and Computation - The Meeting Point of Number Theory, Computer Science, Coding Theory and Cryptography... Finite Fields: Theory and Computation - The Meeting Point of Number Theory, Computer Science, Coding Theory and Cryptography (Paperback, Softcover reprint of hardcover 1st ed. 1999)
Igor Shparlinski
R5,230 Discovery Miles 52 300 Ships in 18 - 22 working days

This book is mainly devoted to some computational and algorithmic problems in finite fields such as, for example, polynomial factorization, finding irreducible and primitive polynomials, the distribution of these primitive polynomials and of primitive points on elliptic curves, constructing bases of various types and new applications of finite fields to other areas of mathematics. For completeness we in clude two special chapters on some recent advances and applications of the theory of congruences (optimal coefficients, congruential pseudo-random number gener ators, modular arithmetic, etc.) and computational number theory (primality testing, factoring integers, computation in algebraic number theory, etc.). The problems considered here have many applications in Computer Science, Cod ing Theory, Cryptography, Numerical Methods, and so on. There are a few books devoted to more general questions, but the results contained in this book have not till now been collected under one cover. In the present work the author has attempted to point out new links among different areas of the theory of finite fields. It contains many very important results which previously could be found only in widely scattered and hardly available conference proceedings and journals. In particular, we extensively review results which originally appeared only in Russian, and are not well known to mathematicians outside the former USSR."

Fundamentals of Diophantine Geometry (Paperback, Softcover reprint of hardcover 1st ed. 1983): S. Lang Fundamentals of Diophantine Geometry (Paperback, Softcover reprint of hardcover 1st ed. 1983)
S. Lang
R2,337 Discovery Miles 23 370 Ships in 18 - 22 working days

Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.

The Lerch zeta-function (Paperback, 1st ed. Softcover of orig. ed. 2003): Antanas Laurincikas, Ramunas Garunkstis The Lerch zeta-function (Paperback, 1st ed. Softcover of orig. ed. 2003)
Antanas Laurincikas, Ramunas Garunkstis
R1,408 Discovery Miles 14 080 Ships in 18 - 22 working days

The Lerch zeta-function is the first monograph on this topic, which is a generalization of the classic Riemann, and Hurwitz zeta-functions. Although analytic results have been presented previously in various monographs on zeta-functions, this is the first book containing both analytic and probability theory of Lerch zeta-functions.

The book starts with classical analytical theory (Euler gamma-functions, functional equation, mean square). The majority of the presented results are new: on approximate functional equations and its applications and on zero distribution (zero-free regions, number of nontrivial zeros etc). Special attention is given to limit theorems in the sense of the weak convergence of probability measures for the Lerch zeta-function. From limit theorems in the space of analytic functions the universitality and functional independence is derived. In this respect the book continues the research of the first author presented in the monograph Limit Theorems for the Riemann zeta-function.

This book will be useful to researchers and graduate students working in analytic and probabilistic number theory, and can also be used as a textbook for postgraduate students.

Resolution of Singularities of Embedded Algebraic Surfaces (Paperback, Softcover reprint of hardcover 2nd ed. 1998): Shreeram... Resolution of Singularities of Embedded Algebraic Surfaces (Paperback, Softcover reprint of hardcover 2nd ed. 1998)
Shreeram S. Abhyankar
R2,661 Discovery Miles 26 610 Ships in 18 - 22 working days

The common solutions of a finite number of polynomial equations in a finite number of variables constitute an algebraic variety. The degrees of freedom of a moving point on the variety is the dimension of the variety. A one-dimensional variety is a curve and a two-dimensional variety is a surface. A three-dimensional variety may be called asolid. Most points of a variety are simple points. Singularities are special points, or points of multiplicity greater than one. Points of multiplicity two are double points, points of multiplicity three are tripie points, and so on. A nodal point of a curve is a double point where the curve crosses itself, such as the alpha curve. A cusp is a double point where the curve has a beak. The vertex of a cone provides an example of a surface singularity. A reversible change of variables gives abirational transformation of a variety. Singularities of a variety may be resolved by birational transformations.

Real and Complex Dynamical Systems (Paperback, Softcover reprint of hardcover 1st ed. 1995): B. Branner, Poul Hjorth Real and Complex Dynamical Systems (Paperback, Softcover reprint of hardcover 1st ed. 1995)
B. Branner, Poul Hjorth
R5,841 Discovery Miles 58 410 Ships in 18 - 22 working days

This volume contains edited versions of 11 contributions given by main speakers at the NATO Advanced Study Institute on lReal and Complex Dynamical Systems in Hiller0d, Denmark, June 20th - July 2nd, 1993. The vision of the institute was to illustrate the interplay between two important fields of Mathematics: Real Dynamical Systems and Complex Dynamical Systems. The interaction between these two fields has been growing over the years. Problems in Real Dynamical Systems have recently been solved using complex tools in the real or by extension to the complex. In return, problems in Complex Dynamical Systems have been settled using results from Real Dynamical Systems. The programme of the institute was to examine the state of the art of central parts of both Real and Complex Dynamical Systems, to reinforce contact between the two aspects of the theory and to make recent progress in each accessible to a larger group of mathematicians.

Elements of Number Theory (Paperback, Softcover reprint of hardcover 1st ed. 2003): John Stillwell Elements of Number Theory (Paperback, Softcover reprint of hardcover 1st ed. 2003)
John Stillwell
R1,401 Discovery Miles 14 010 Ships in 18 - 22 working days

Solutions of equations in integers is the central problem of number theory and is the focus of this book. The amount of material is suitable for a one-semester course. The author has tried to avoid the ad hoc proofs in favor of unifying ideas that work in many situations. There are exercises at the end of almost every section, so that each new idea or proof receives immediate reinforcement.

Coding Theory and Number Theory (Paperback, Softcover reprint of hardcover 1st ed. 2003): T. Hiramatsu, Gunter Koehler Coding Theory and Number Theory (Paperback, Softcover reprint of hardcover 1st ed. 2003)
T. Hiramatsu, Gunter Koehler
R1,379 Discovery Miles 13 790 Ships in 18 - 22 working days

This book grew out of our lectures given in the Oberseminar on 'Cod ing Theory and Number Theory' at the Mathematics Institute of the Wiirzburg University in the Summer Semester, 2001. The coding the ory combines mathematical elegance and some engineering problems to an unusual degree. The major advantage of studying coding theory is the beauty of this particular combination of mathematics and engineering. In this book we wish to introduce some practical problems to the math ematician and to address these as an essential part of the development of modern number theory. The book consists of five chapters and an appendix. Chapter 1 may mostly be dropped from an introductory course of linear codes. In Chap ter 2 we discuss some relations between the number of solutions of a diagonal equation over finite fields and the weight distribution of cyclic codes. Chapter 3 begins by reviewing some basic facts from elliptic curves over finite fields and modular forms, and shows that the weight distribution of the Melas codes is represented by means of the trace of the Hecke operators acting on the space of cusp forms. Chapter 4 is a systematic study of the algebraic-geometric codes. For a long time, the study of algebraic curves over finite fields was the province of pure mathematicians. In the period 1977 - 1982, V. D. Goppa discovered an amazing connection between the theory of algebraic curves over fi nite fields and the theory of q-ary codes."

Number Theory and Applications (Paperback, Softcover reprint of hardcover 1st ed. 1989): Richard A. Mollin Number Theory and Applications (Paperback, Softcover reprint of hardcover 1st ed. 1989)
Richard A. Mollin
R12,707 Discovery Miles 127 070 Ships in 18 - 22 working days

Proceedings of the NATO Advanced Study Institute, Banff Centre, Canada, April 27-May 5, 1988

The Book of Numbers (Paperback, Softcover reprint of the original 1st ed. 1996): John H. Conway, Richard Guy The Book of Numbers (Paperback, Softcover reprint of the original 1st ed. 1996)
John H. Conway, Richard Guy
R1,298 R1,076 Discovery Miles 10 760 Save R222 (17%) Ships in 18 - 22 working days

"...the great feature of the book is that anyone can read it without excessive head scratching...You'll find plenty here to keep you occupied, amused, and informed. Buy, dip in, wallow." -IAN STEWART, NEW SCIENTIST "...a delightful look at numbers and their roles in everything from language to flowers to the imagination." -SCIENCE NEWS "...a fun and fascinating tour of numerical topics and concepts. It will have readers contemplating ideas they might never have thought were understandable or even possible." -WISCONSIN BOOKWATCH "This popularization of number theory looks like another classic." -LIBRARY JOURNAL

Arithmetic Functions and Integer Products (Paperback, Softcover reprint of the original 1st ed. 1985): P.D.T.A. Elliott Arithmetic Functions and Integer Products (Paperback, Softcover reprint of the original 1st ed. 1985)
P.D.T.A. Elliott
R1,457 Discovery Miles 14 570 Ships in 18 - 22 working days

Every positive integer m has a product representation of the form where v, k and the ni are positive integers, and each Ei = +/- I. A value can be given for v which is uniform in the m. A representation can be computed so that no ni exceeds a certain fixed power of 2m, and the number k of terms needed does not exceed a fixed power of log 2m. Consider next the collection of finite probability spaces whose associated measures assume only rational values. Let hex) be a real-valued function which measures the information in an event, depending only upon the probability x with which that event occurs. Assuming hex) to be non negative, and to satisfy certain standard properties, it must have the form -A(x log x + (I - x) 10g(I -x". Except for a renormalization this is the well-known function of Shannon. What do these results have in common? They both apply the theory of arithmetic functions. The two widest classes of arithmetic functions are the real-valued additive and the complex-valued multiplicative functions. Beginning in the thirties of this century, the work of Erdos, Kac, Kubilius, Turan and others gave a discipline to the study of the general value distribution of arithmetic func tions by the introduction of ideas, methods and results from the theory of Probability. I gave an account of the resulting extensive and still developing branch of Number Theory in volumes 239/240 of this series, under the title Probabilistic Number Theory.

Classical Theory of Algebraic Numbers (Paperback, Softcover reprint of hardcover 2nd ed. 2001): Paulo Ribenboim Classical Theory of Algebraic Numbers (Paperback, Softcover reprint of hardcover 2nd ed. 2001)
Paulo Ribenboim
R2,507 Discovery Miles 25 070 Ships in 18 - 22 working days

The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.

Nevanlinna's Theory of Value Distribution - The Second Main Theorem and its Error Terms (Paperback, Softcover reprint of... Nevanlinna's Theory of Value Distribution - The Second Main Theorem and its Error Terms (Paperback, Softcover reprint of hardcover 1st ed. 2001)
William Cherry, Zhuan Ye
R2,879 Discovery Miles 28 790 Ships in 18 - 22 working days

On the one hand, this monograph serves as a self-contained introduction to Nevanlinna's theory of value distribution because the authors only assume the reader is familiar with the basics of complex analysis. On the other hand, the monograph also serves as a valuable reference for the research specialist because the authors present, for the first time in book form, the most modern and refined versions of the Second Main Theorem with precise error terms, in both the geometric and logarithmic derivative based approaches. A unique feature of the monograph is its "number-theoretic digressions." These special sections assume no background in number theory and explore the exciting interconnections between Nevanlinna theory and the theory of Diophantine approximation.

Computational Excursions in Analysis and Number Theory (Paperback, Softcover reprint of the original 1st ed. 2002): Peter... Computational Excursions in Analysis and Number Theory (Paperback, Softcover reprint of the original 1st ed. 2002)
Peter Borwein
R2,703 Discovery Miles 27 030 Ships in 18 - 22 working days

This book is designed for a computationally intensive graduate course based around a collection of classical unsolved extremal problems for polynomials. These problems, all of which lend themselves to extensivecomputational exploration, live at the interface of analysis, combinatorics and number theory so the techniques involved are diverse.A main computational tool used is the LLL algorithm for finding small vectors in a lattice.Many exercises and open research problems are included. Indeed one aim of the book is to tempt the able reader into the rich possibilities for research in this area.Peter Borwein is Professor of Mathematics at Simon Fraser University and the Associate Director of the Centre for Experimental and Constructive Mathematics. He is also the recipient of the Mathematical Association of America's Chauvenet Prize and the Merten M. Hasse Prize for expositorywriting in mathematics.

Local Fields (Hardcover, 1st ed. 1979. Corr. 2nd printing 1995): Marvin J. Greenberg Local Fields (Hardcover, 1st ed. 1979. Corr. 2nd printing 1995)
Marvin J. Greenberg; Jean-Pierre Serre
R1,780 Discovery Miles 17 800 Ships in 10 - 15 working days

The goal of this book is to present local class field theory from the cohomo logical point of view, following the method inaugurated by Hochschild and developed by Artin-Tate. This theory is about extensions-primarily abelian-of "local" (i.e., complete for a discrete valuation) fields with finite residue field. For example, such fields are obtained by completing an algebraic number field; that is one of the aspects of "localisation." The chapters are grouped in "parts." There are three preliminary parts: the first two on the general theory of local fields, the third on group coho mology. Local class field theory, strictly speaking, does not appear until the fourth part. Here is a more precise outline of the contents of these four parts: The first contains basic definitions and results on discrete valuation rings, Dedekind domains (which are their "globalisation") and the completion process. The prerequisite for this part is a knowledge of elementary notions of algebra and topology, which may be found for instance in Bourbaki. The second part is concerned with ramification phenomena (different, discriminant, ramification groups, Artin representation). Just as in the first part, no assumptions are made here about the residue fields. It is in this setting that the "norm" map is studied; I have expressed the results in terms of "additive polynomials" and of "multiplicative polynomials," since using the language of algebraic geometry would have led me too far astray."

Number Theory for Computing (Paperback, Softcover reprint of hardcover 2nd ed. 2002): M. E. Hellmann Number Theory for Computing (Paperback, Softcover reprint of hardcover 2nd ed. 2002)
M. E. Hellmann; Song Y. Yan
R1,679 Discovery Miles 16 790 Ships in 18 - 22 working days

This book provides a good introduction to the classical elementary number theory and the modern algorithmic number theory, and their applications in computing and information technology, including computer systems design, cryptography and network security. In this second edition proofs of many theorems have been provided, further additions and corrections were made.

Unsolved Problems in Number Theory (Paperback, Softcover reprint of hardcover 3rd ed. 2004): Richard Guy Unsolved Problems in Number Theory (Paperback, Softcover reprint of hardcover 3rd ed. 2004)
Richard Guy
R1,807 Discovery Miles 18 070 Ships in 18 - 22 working days

Mathematics is kept alive by the appearance of new, unsolved problems. This book provides a steady supply of easily understood, if not easily solved, problems that can be considered in varying depths by mathematicians at all levels of mathematical maturity. This new edition features lists of references to OEIS, Neal Sloane 's Online Encyclopedia of Integer Sequences, at the end of several of the sections.

Sieves in Number Theory (Paperback, Softcover reprint of hardcover 1st ed. 2001): George Greaves Sieves in Number Theory (Paperback, Softcover reprint of hardcover 1st ed. 2001)
George Greaves
R4,018 Discovery Miles 40 180 Ships in 18 - 22 working days

This book surveys the current state of the "small" sieve methods developed by Brun, Selberg and later workers. The book is suitable for university graduates making their first acquaintance with the subject, leading them towards the frontiers of modern research and unsolved problems in the subject area.

The Arithmetic of Infinitesimals (Paperback, Softcover reprint of the original 1st ed. 2004): John Wallis The Arithmetic of Infinitesimals (Paperback, Softcover reprint of the original 1st ed. 2004)
John Wallis; Introduction by Jacqueline A. Stedall
R4,061 Discovery Miles 40 610 Ships in 18 - 22 working days

John Wallis (1616-1703) was the most influential English mathematician prior to Newton. He published his most famous work, Arithmetica Infinitorum, in Latin in 1656. This book studied the quadrature of curves and systematised the analysis of Descartes and Cavelieri. Upon publication, this text immediately became the standard book on the subject and was frequently referred to by subsequent writers. This will be the first English translation of this text ever to be published.

Spectral Theory of the Riemann Zeta-Function (Paperback): Yoichi Motohashi Spectral Theory of the Riemann Zeta-Function (Paperback)
Yoichi Motohashi
R1,568 Discovery Miles 15 680 Ships in 10 - 15 working days

The Riemann zeta function is one of the most studied objects in mathematics, and is of fundamental importance. In this book, based on his own research, Professor Motohashi shows that the function is closely bound with automorphic forms and that many results from there can be woven with techniques and ideas from analytic number theory to yield new insights into, and views of, the zeta function itself. The story starts with an elementary but unabridged treatment of the spectral resolution of the non-Euclidean Laplacian and the trace formulas. This is achieved by the use of standard tools from analysis rather than any heavy machinery, forging a substantial aid for beginners in spectral theory as well. These ideas are then utilized to unveil an image of the zeta-function, first perceived by the author, revealing it to be the main gem of a necklace composed of all automorphic L-functions. In this book, readers will find a detailed account of one of the most fascinating stories in the development of number theory, namely the fusion of two main fields in mathematics that were previously studied separately.

Duality in Analytic Number Theory (Paperback): Peter D. T. A. Elliott Duality in Analytic Number Theory (Paperback)
Peter D. T. A. Elliott
R1,581 Discovery Miles 15 810 Ships in 10 - 15 working days

In this stimulating book, aimed at researchers both established and budding, Peter Elliott demonstrates a method and a motivating philosophy that combine to cohere a large part of analytic number theory, including the hitherto nebulous study of arithmetic functions. Besides its application, the book also illustrates a way of thinking mathematically: historical background is woven into the narrative, variant proofs illustrate obstructions, false steps and the development of insight, in a manner reminiscent of Euler. It is shown how to formulate theorems as well as how to construct their proofs. Elementary notions from functional analysis, Fourier analysis, functional equations and stability in mechanics are controlled by a geometric view and synthesized to provide an arithmetical analogue of classical harmonic analysis that is powerful enough to establish arithmetic propositions until now beyond reach. Connections with other branches of analysis are illustrated by over 250 exercises, structured in chains about individual topics.

Problems in Algebraic Number Theory (Paperback, Softcover reprint of hardcover 2nd ed. 2005): M. Ram Murty, Jody (Indigo)... Problems in Algebraic Number Theory (Paperback, Softcover reprint of hardcover 2nd ed. 2005)
M. Ram Murty, Jody (Indigo) Esmonde
R1,655 Discovery Miles 16 550 Ships in 18 - 22 working days

The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject

Includes various levels of problems - some are easy and straightforward, while others are more challenging

All problems are elegantly solved

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Wilder - Renegades: Book 1
Rebecca Yarros Paperback R305 R272 Discovery Miles 2 720
The Catch
Amy Lea Paperback R250 R223 Discovery Miles 2 230
New Times
Rehana Rossouw Paperback  (1)
R280 R259 Discovery Miles 2 590
The High Notes
Danielle Steel Paperback R340 R272 Discovery Miles 2 720
Breekpunt
Marie Lotz Paperback R350 R312 Discovery Miles 3 120
Vrydagaand
Elsa Winckler Paperback R388 Discovery Miles 3 880
Sleeper
Mike Nicol Paperback R300 R277 Discovery Miles 2 770
13-Minute Murder
James Patterson Paperback  (1)
R215 R199 Discovery Miles 1 990
Being Kari
Qarnita Loxton Paperback R205 R183 Discovery Miles 1 830
Too Beautiful To Break
Tessa Bailey Paperback R280 R204 Discovery Miles 2 040

 

Partners