![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory > General
Like the intriguing Fibonacci and Lucas numbers, Catalan numbers are also ubiquitous. "They have the same delightful propensity for popping up unexpectedly, particularly in combinatorial problems," Martin Gardner wrote in Scientific American. "Indeed, the Catalan sequence is probably the most frequently encountered sequence that is still obscure enough to cause mathematicians lacking access to Sloane's Handbook of Integer Sequences to expend inordinate amounts of energy re-discovering formulas that were worked out long ago," he continued. As Gardner noted, many mathematicians may know the abc's of Catalan sequence, but not many are familiar with the myriad of their unexpected occurrences, applications, and properties; they crop up in chess boards, computer programming, and even train tracks. This book presents a clear and comprehensive introduction to one of the truly fascinating topics in mathematics. Catalan numbers are named after the Belgian mathematician Eugene Charles Catalan (1814-1894), who "discovered" them in 1838, though he was not the first person to discover them. The great Swiss mathematician Leonhard Euler (1707-1763) "discovered" them around 1756, but even before then and though his work was not known to the outside world, Chinese mathematician Antu Ming (1692?-1763) first discovered Catalan numbers about 1730. A great source of fun for both amateurs and mathematicians, they can be used by teachers and professors to generate excitement among students for exploration and intellectual curiosity and to sharpen a variety of mathematical skills and tools, such as pattern recognition, conjecturing, proof-techniques, and problem-solving techniques. This book is not intended for mathematicians only but for a much larger audience, including high school students, math and science teachers, computer scientists, and those amateurs with a modicum of mathematical curiosity. An invaluable resource book, it contains an intriguing array of applications to computer science, abstract algebra, combinatorics, geometry, graph theory, chess, and world series.
This undergraduate-level introduction describes those mathematical properties of prime numbers that can be deduced with the tools of calculus. Jeffrey Stopple pays special attention to the rich history of the subject and ancient questions on polygonal numbers, perfect numbers and amicable pairs, as well as to the important open problems. The culmination of the book is a brief presentation of the Riemann zeta function, which determines the distribution of prime numbers, and of the significance of the Riemann Hypothesis.
This undergraduate-level introduction describes those mathematical properties of prime numbers that can be deduced with the tools of calculus. Jeffrey Stopple pays special attention to the rich history of the subject and ancient questions on polygonal numbers, perfect numbers and amicable pairs, as well as to the important open problems. The culmination of the book is a brief presentation of the Riemann zeta function, which determines the distribution of prime numbers, and of the significance of the Riemann Hypothesis.
Many of the important and creative developments in modern mathematics resulted from attempts to solve questions that originate in number theory. The publication of Emil Grosswald's classic text presents an illuminating introduction to number theory. Combining the historical developments with the analytical approach, Topics from the Theory of Numbers offers the reader a diverse range of subjects to investigate.
This book is a modern treatment of the theory of theta functions in the context of algebraic geometry. The novelty of its approach lies in the systematic use of the Fourier-Mukai transform. Alexander Polishchuk starts by discussing the classical theory of theta functions from the viewpoint of the representation theory of the Heisenberg group (in which the usual Fourier transform plays the prominent role). He then shows that in the algebraic approach to this theory (originally due to Mumford) the Fourier-Mukai transform can often be used to simplify the existing proofs or to provide completely new proofs of many important theorems. This incisive volume is for graduate students and researchers with strong interest in algebraic geometry.
At first glance the prime numbers appear to be distributed in a very irregular way amongst the integers, but it is possible to produce a simple formula that tells (in an approximate but well-defined sense) how many primes can be found that are less than any integer. The prime number theorem tells what this formula is and it is indisputably one of the the great classical theorems of mathematics. This textbook introduces the prime number theorem and is suitable for advanced undergraduates and beginning graduate students. The author deftly shows how analytical tools can be used in number theory to attack a 'real' problem.
This text is a self-contained study of expander graphs, specifically, their explicit construction. Expander graphs are highly connected but sparse, and while being of interest within combinatorics and graph theory, they can also be applied to computer science and engineering. Only a knowledge of elementary algebra, analysis and combinatorics is required because the authors provide the necessary background from graph theory, number theory, group theory and representation theory. Thus the text can be used as a brief introduction to these subjects and their synthesis in modern mathematics.
This text is a self-contained study of expander graphs, specifically, their explicit construction. Expander graphs are highly connected but sparse, and while being of interest within combinatorics and graph theory, they can also be applied to computer science and engineering. Only a knowledge of elementary algebra, analysis and combinatorics is required because the authors provide the necessary background from graph theory, number theory, group theory and representation theory. Thus the text can be used as a brief introduction to these subjects and their synthesis in modern mathematics.
Alan Baker's 60th birthday in August 1999 offered an ideal opportunity to organize a conference at ETH Zurich with the goal of presenting the state of the art in number theory and geometry. Many of the leaders in the subject were brought together to present an account of research in the last century as well as speculations for possible further research. The papers in this volume cover a broad spectrum of number theory including geometric, algebrao-geometric and analytic aspects. This volume will appeal to number theorists, algebraic geometers, and geometers with a number theoretic background. However, it will also be valuable for mathematicians (in particular research students) who are interested in being informed in the state of number theory at the start of the 21st century and in possible developments for the future.
This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.
This is an elementary introduction to the representation theory of
real and complex matrix groups. The text is written for students in
mathematics and physics who have a good knowledge of
differential/integral calculus and linear algebra and are familiar
with basic facts from algebra, number theory and complex analysis.
The goal is to present the fundamental concepts of representation
theory, to describe the connection between them, and to explain
some of their background. The focus is on groups which are of
particular interest for applications in physics and number theory
(e.g. Gell-Mann's eightfold way and theta functions, automorphic
forms). The reader finds a large variety of examples which are
presented in detail and from different points of view.
The discrepancy method has produced the most fruitful line of attack on a pivotal computer science question: What is the computational power of random bits? It has also played a major role in recent developments in complexity theory. This book tells the story of the discrepancy method in a few succinct independent vignettes. The chapters explore such topics as communication complexity, pseudo-randomness, rapidly mixing Markov chains, points on a sphere, derandomization, convex hulls and Voronoi diagrams, linear programming, geometric sampling and VC-dimension theory, minimum spanning trees, circuit complexity, and multidimensional searching. The mathematical treatment is thorough and self-contained, with minimal prerequisites. More information can be found on the book's home page at http://www.cs.princeton.edu/~chazelle/book.html.
Local Newforms for GSp(4) describes a theory of new- and oldforms for representations of GSp(4) over a non-archimedean local field. This theory considers vectors fixed by the paramodular groups, and singles out certain vectors that encode canonical information, such as L-factors and epsilon-factors, through their Hecke and Atkin-Lehner eigenvalues. While there are analogies to the GL(2) case, this theory is novel and unanticipated by the existing framework of conjectures. An appendix includes extensive tables about the results and the representation theory of GSp(4).
The amount of mathematics invented for number-theoretic reasons is impressive. It includes much of complex analysis, the re-foundation of algebraic geometry on commutative algebra, group cohomology, homological algebra, and the theory of motives. Zeta and L-functions sit at the meeting point of all these theories and have played a profound role in shaping the evolution of number theory. This book presents a big picture of zeta and L-functions and the complex theories surrounding them, combining standard material with results and perspectives that are not made explicit elsewhere in the literature. Particular attention is paid to the development of the ideas surrounding zeta and L-functions, using quotes from original sources and comments throughout the book, pointing the reader towards the relevant history. Based on an advanced course given at Jussieu in 2013, it is an ideal introduction for graduate students and researchers to this fascinating story.
This book constitutes the refereed proceedings of the 7th International Algorithmic Number Theory Symposium, ANTS 2006, held in Berlin, July 2006. The book presents 37 revised full papers together with 4 invited papers selected for inclusion. The papers are organized in topical sections on algebraic number theory, analytic and elementary number theory, lattices, curves and varieties over fields of characteristic zero, curves over finite fields and applications, and discrete logarithms.
This book presents a historical overview of number theory. It examines texts that span some thirty-six centuries of arithmetical work, from an Old Babylonian tablet to Legendre's Essai sur la Theorie des Nombres, written in 1798. Coverage employs a historical approach in the analysis of problems and evolving methods of number theory and their significance within mathematics. The book also takes the reader into the workshops of four major authors of modern number theory: Fermat, Euler, Lagrange and Legendre and presents a detailed and critical examination of their work.
This graduate text, based on years of teaching experience, is intended for first or second year graduate students in pure mathematics. The main goal of the text is to show how the computer can be used as a tool for research in number theory through numerical experimentation. The book contains many examples of experiments in binary quadratic forms, zeta functions of varieties over finite fields, elementary class field theory, elliptic units, modular forms, along with exercises and selected solutions. Sample programs are written in GP, the scripting language for the computational package PARI, and are available for download from the author's website.
In Single Digits, Marc Chamberland takes readers on a fascinating exploration of small numbers, from one to nine, looking at their history, applications, and connections to various areas of mathematics, including number theory, geometry, chaos theory, numerical analysis, and mathematical physics. For instance, why do eight perfect card shuffles leave a standard deck of cards unchanged? And, are there really "six degrees of separation" between all pairs of people? Chamberland explores these questions and covers vast numerical territory, such as illustrating the ways that the number three connects to chaos theory, the number of guards needed to protect an art gallery, problematic election results and so much more. The book's short sections can be read independently and digested in bite-sized chunks--especially good for learning about the Ham Sandwich Theorem and the Pizza Theorem. Appealing to high school and college students, professional mathematicians, and those mesmerized by patterns, this book shows that single digits offer a plethora of possibilities that readers can count on.
This challenging problem book by renowned US Olympiad coaches, mathematics teachers, and researchers develops a multitude of problem-solving skills needed to excel in mathematical contests and in mathematical research in number theory. Offering inspiration and intellectual delight, the problems throughout the book encourage students to express their ideas in writing to explain how they conceive problems, what conjectures they make, and what conclusions they reach. Applying specific techniques and strategies, readers will acquire a solid understanding of the fundamental concepts and ideas of number theory.
An update of the most accessible introductory number theory text available, Fundamental Number Theory with Applications, Second Edition presents a mathematically rigorous yet easy-to-follow treatment of the fundamentals and applications of the subject. The substantial amount of reorganizing makes this edition clearer and more elementary in its coverage. New to the Second Edition * Removal of all advanced material to be even more accessible in scope * New fundamental material, including partition theory, generating functions, and combinatorial number theory * Expanded coverage of random number generation, Diophantine analysis, and additive number theory * More applications to cryptography, primality testing, and factoring * An appendix on the recently discovered unconditional deterministic polynomial-time algorithm for primality testing Taking a truly elementary approach to number theory, this text supplies the essential material for a first course on the subject. Placed in highlighted boxes to reduce distraction from the main text, nearly 70 biographies focus on major contributors to the field. The presentation of over 1,300 entries in the index maximizes cross-referencing so students can find data with ease.
Explore the main algebraic structures and number systems that play a central role across the field of mathematics Algebra and number theory are two powerful branches of modern mathematics at the forefront of current mathematical research, and each plays an increasingly significant role in different branches of mathematics, from geometry and topology to computing and communications. Based on the authors' extensive experience within the field, "Algebra and Number Theory" has an innovative approach that integrates three disciplines--linear algebra, abstract algebra, and number theory--into one comprehensive and fluid presentation, facilitating a deeper understanding of the topic and improving readers' retention of the main concepts. The book begins with an introduction to the elements of set theory. Next, the authors discuss matrices, determinants, and elements of field theory, including preliminary information related to integers and complex numbers. Subsequent chapters explore key ideas relating to linear algebra such as vector spaces, linear mapping, and bilinear forms. The book explores the development of the main ideas of algebraic structures and concludes with applications of algebraic ideas to number theory. Interesting applications are provided throughout to demonstrate the relevance of the discussed concepts. In addition, chapter exercises allow readers to test their comprehension of the presented material. "Algebra and Number Theory" is an excellent book for courses on linear algebra, abstract algebra, and number theory at the upper-undergraduate level. It is also a valuable reference for researchers working in different fields of mathematics, computer science, and engineering as well as for individuals preparing for a career in mathematics education.
This book constitutes the refereed proceedings of the 5th International Workshop on Ant Colony Optimization and Swarm Intelligence, ANTS 2006, held in Brussels, Belgium, in September 2006. The 27 revised full papers, 23 revised short papers, and 12 extended abstracts presented were carefully reviewed and selected from 115 submissions. The papers are devoted to theoretical and foundational aspects of ant algorithms, evolutionary optimization, ant colony optimization, and swarm intelligence and deal with a broad variety of optimization applications in networking, operations research, multiagent systems, robot systems, networking, etc.
This book provides a comprehensive account of a key, perhaps the most important, theory that forms the basis of Taylor-Wiles proof of Fermat's last theorem. Hida begins with an overview of the theory of automorphic forms on linear algebraic groups and then covers the basic theory and recent results on elliptic modular forms, including a substantial simplification of the Taylor-Wiles proof by Fujiwara and Diamond. He offers a detailed exposition of the representation theory of profinite groups (including deformation theory), as well as the Euler characteristic formulas of Galois cohomology groups. The final chapter presents a proof of a non-abelian class number formula.
This book covers most of the known results on reducibility of polynomials over arbitrary fields, algebraically closed fields and finitely generated fields. Results valid only over finite fields, local fields or the rational field are not covered here, but several theorems on reducibility of polynomials over number fields that are either totally real or complex multiplication fields are included. Some of these results are based on recent work of E. Bombieri and U. Zannier (presented here by Zannier in an appendix). The book also treats other subjects like Ritt's theory of composition of polynomials, and properties of the Mahler measure, and it concludes with a bibliography of over 300 items. This unique work will be a necessary resource for all number theorists and researchers in related fields.
Hex: The Full Story is for anyone - hobbyist, professional, student, teacher - who enjoys board games, game theory, discrete math, computing, or history. hex was discovered twice, in 1942 by Piet Hein and again in 1949 by John F. nash. How did this happen? Who created the puzzle for Hein's Danish newspaper column? How are Martin Gardner, David Gale, Claude Shannon, and Claude Berge involved? What is the secret to playing Hex well? The answers are inside... Features New documents on Hein's creation of Hex, the complete set of Danish puzzles, and the identity of their composer Chapters on Gale's game Bridg-it, the game Rex, computer Hex, open Hex problems, and more Dozens of new puzzles and solutions Study guide for Hex players Supplemenetary text for a course in game theory, discrete math, computer science, or science history |
You may like...
Friendly Introduction to Number Theory…
Joseph Silverman
Paperback
Recent Progress On Topics Of Ramanujan…
Helmut Maier, Laszlo Toth, …
Hardcover
R1,670
Discovery Miles 16 700
|