![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory > General
This book is a comprehensive and systematic account of the theory of p-adic and classical modular forms and the theory of the special values of arithmetic L-functions and p-adic L-functions. The approach is basically algebraic, and the treatment is elementary. No deep knowledge from algebraic geometry and representation theory is required. The author's main tool in dealing with these problems is taken from cohomology theory over Riemann surfaces, which is also explained in detail in the book. He also gives a concise but thorough treatment of analytic continuation and functional equation. Graduate students wishing to know more about L-functions will find this a unique introduction to this fascinating branch of mathematics.
This book is a comprehensive and systematic account of the theory of p-adic and classical modular forms and the theory of the special values of arithmetic L-functions and p-adic L-functions. The approach is basically algebraic, and the treatment is elementary. No deep knowledge from algebraic geometry and representation theory is required. The author's main tool in dealing with these problems is taken from cohomology theory over Riemann surfaces, which is also explained in detail in the book. He also gives a concise but thorough treatment of analytic continuation and functional equation. Graduate students wishing to know more about L-functions will find this a unique introduction to this fascinating branch of mathematics.
This book originates from graduate courses given in Cambridge and London. It provides a brisk, thorough treatment of the foundations of algebraic number theory, and builds on that to introduce more advanced ideas. Throughout, the authors emphasise the systematic development of techniques for the explicit calculation of the basic invariants, such as rings of integers, class groups, and units. Moreover they combine, at each stage of development, theory with explicit computations and applications, and provide motivation in terms of classical number-theoretic problems. A number of special topics are included that can be treated at this level but can usually only be found in research monographs or original papers, for instance: module theory of Dedekind domains; tame and wild ramifications; Gauss series and Gauss periods; binary quadratic forms; and Brauer relations. This is the only textbook at this level which combines clean, modern algebraic techniques together with a substantial arithmetic content. It will be indispensable for all practising and would-be algebraic number theorists.
Grothendieck's duality theory for coherent cohomology is a fundamental tool in algebraic geometry and number theory, in areas ranging from the moduli of curves to the arithmetic theory of modular forms. Presented is a systematic overview of the entire theory, including many basic definitions and a detailed study of duality on curves, dualizing sheaves, and Grothendieck's residue symbol. Along the way proofs are given of some widely used foundational results which are not proven in existing treatments of the subject, such as the general base change compatibility of the trace map for proper Cohen-Macaulay morphisms (e.g., semistable curves). This should be of interest to mathematicians who have some familiarity with Grothendieck's work and wish to understand the details of this theory.
This introduction to algebraic number theory via the famous problem of "Fermats Last Theorem" follows its historical development, beginning with the work of Fermat and ending with Kummers theory of "ideal" factorization. The more elementary topics, such as Eulers proof of the impossibilty of x+y=z, are treated in an uncomplicated way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummers theory to quadratic integers and relates this to Gauss'theory of binary quadratic forms, an interesting and important connection that is not explored in any other book.
This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.
Leading researchers in the field of coding theory and cryptography present their newest findings, published here for the first time following a presentation at the International Conference on Coding Theory, Cryptography and Related Areas. The authors include Tom Hoeholdt, Henning Stichtenoth, and Horacio Tapia-Recillas.
The book lays algebraic foundations for real geometry through a systematic investigation of partially ordered rings of semi-algebraic functions. Real spectra serve as primary geometric objects, the maps between them are determined by rings of functions associated with the spectra. The many different possible choices for these rings of functions are studied via reflections of partially ordered rings. Readers should feel comfortable using basic algebraic and categorical concepts. As motivational background some familiarity with real geometry will be helpful. The book aims at researchers and graduate students with an interest in real algebra and geometry, ordered algebraic structures, topology and rings of continuous functions.
The National Security Agency funded a conference on Coding theory, Cryp- tography, and Number Theory (nick-named Cryptoday) at the United States Naval Academy, on October 25-27, 1998. We were very fortunate to have been able to attract talented mathematicians and cryptographers to the meeting. Unfortunately, some people couldn't make it for either scheduling or funding reasons. Some of these have been invited to contribute a paper anyway. In addition, Prof. William Tutte and Frode Weierud have been kind enough to allow the inclusion of some very interesting unpublished papers of theirs. The papers basically fall into three catagories. Historical papers on cryp- tography done during World War II (Hatch, Hilton, Tutte, Ulfving, and Weierud), mathematical papers on more recent methods in cryptography (Cosgrave, Lomonoco, Wardlaw), and mathematical papers in coding theory (Gao, Joyner, Michael, Shokranian, Shokrollahi). A brief biography of the authors follows. - Peter Hilton is a Distinguished Professor of Mathematics Emeritus at the State University of New York at Binghamton. He worked from 1941 to 1945 in the British cryptanalytic headquarters at Bletchley Park. Profes- sor Hilton has done extensive research in algebraic topology and group theory. - William Tutte is a Distinguished Professor Emeritus and an Adjunct Pro- fessor in the Combinatorics and Optimization Department at the Univer- sity of Waterloo. He worked from 1941 to 1945 in the British cryptana- lytic headquarters at Bletchley Park. Professor Tutte has done extensive research in the field of combinatorics.
This book constitutes the refereed proceedings of the 4th International Algorithmic Number Theory Symposium, ANTS-IV, held in Leiden, The Netherlands, in July 2000.The book presents 36 contributed papers which have gone through a thorough round of reviewing, selection and revision. Also included are 4 invited survey papers. Among the topics addressed are gcd algorithms, primality, factoring, sieve methods, cryptography, linear algebra, lattices, algebraic number fields, class groups and fields, elliptic curves, polynomials, function fields, and power sums.
The study of special cases of elliptic curves goes back to Diophantos and Fermat, and today it is still one of the liveliest centers of research in number theory. This book, addressed to beginning graduate students, introduces basic theory from a contemporary viewpoint but with an eye to the historical background. The central portion deals with curves over the rationals: the Mordell-Wei finite basis theorem, points of finite order (Nagell-Lutz), etc. The treatment is structured by the local-global standpoint and culminates in the description of the Tate-Shafarevich group as the obstruction to a Hasse principle. In an introductory section the Hasse principle for conics is discussed. The book closes with sections on the theory over finite fields (the "Riemann hypothesis for function fields") and recently developed uses of elliptic curves for factoring large integers. Prerequisites are kept to a minimum; an acquaintance with the fundamentals of Galois theory is assumed, but no knowledge either of algebraic number theory or algebraic geometry is needed. The p-adic numbers are introduced from scratch. Many examples and exercises are included for the reader, and those new to elliptic curves, whether they are graduate students or specialists from other fields, will find this a valuable introduction.
This book is an introduction to the algorithmic aspects of number theory and its applications to cryptography, with special emphasis on the RSA cryptosys-tem. It covers many of the familiar topics of elementary number theory, all with an algorithmic twist. The text also includes many interesting historical notes.
This volume is an outgrowth of the LMS Durham Symposium on L-functions, held in July 1989. The symposium consisted of several short courses, aimed at presenting rigorous but non-technical expositions of the latest research areas, and a number of individual lectures on specific topics. The contributors are all outstanding figures in the area of algebraic number theory and this volume will be of lasting value to students and researchers working in the area.
This book is a self-contained account of the one- and two-dimensional van der Corput method and its use in estimating exponential sums. These arise in many problems in analytic number theory. It is the first cohesive account of much of this material and will be welcomed by graduates and professionals in analytic number theory. The authors show how the method can be applied to problems such as upper bounds for the Riemann-Zeta function. the Dirichlet divisor problem, the distribution of square free numbers, and the Piatetski-Shapiro prime number theorem.
Introduction Model theorists have often joked in recent years that the part of mathemat- ical logic known as "pure model theory" (or stability theory), as opposed to the older and more traditional "model theory applied to algebra" , turns out to have more and more to do with other subjects ofmathematics and to yield gen- uine applications to combinatorial geometry, differential algebra and algebraic geometry. We illustrate this by presenting the very striking application to diophantine geometry due to Ehud Hrushovski: using model theory, he has given the first proof valid in all characteristics of the "Mordell-Lang conjecture for function fields" (The Mordell-Lang conjecture for function fields, Journal AMS 9 (1996), 667-690). More recently he has also given a new (model theoretic) proof of the Manin-Mumford conjecture for semi-abelian varieties over a number field. His proofyields the first effective bound for the cardinality ofthe finite sets involved (The Manin-Mumford conjecture, preprint). There have been previous instances of applications of model theory to alge- bra or number theory, but these appl~cations had in common the feature that their proofs used a lot of algebra (or number theory) but only very basic tools and results from the model theory side: compactness, first-order definability, elementary equivalence...
The object of the present work is a systematic statistical analysis of bilinear processes in the frequency domain. The first two chapters are devoted to the basic theory of nonlinear functions of stationary Gaussian processes, Hermite polynomials, cumulants and higher order spectra, multiple Wiener-Ito integrals and finally chaotic Wiener-Ito spectral representation of subordinated processes. There are two chapters for general nonlinear time series problems."
Originally published in 1934 in the Cambridge Tracts, this volume presents the theory of the distribution of the prime numbers in the series of natural numbers. The major part of the book is devoted to the analytical theory founded on the zeta-function of Riemann. Despite being out of print for a long time, this Tract still remains unsurpassed as an introduction to the field, combining an economy of detail with a clarity of exposition which eases the novice into this area.
This book constitutes the refereed proceedings of the Third International Symposium on Algorithmic Number Theory, ANTS-III, held in Portland, Oregon, USA, in June 1998.The volume presents 46 revised full papers together with two invited surveys. The papers are organized in chapters on gcd algorithms, primality, factoring, sieving, analytic number theory, cryptography, linear algebra and lattices, series and sums, algebraic number fields, class groups and fields, curves, and function fields.
In this volume, originally published in 1990, are included papers presented at two meetings; one a workshop on Number Theory and Cryptography, and the other, the annual meeting of the Australian Mathematical Society. Questions in number theory are of military and commercial importance for the security of communication, as they are related to codes and code-breaking. Papers in the volume range from problems in pure mathematics whose study has been intensified by this connection, through interesting theoretical and combinatorial problems which arise in the implementation, to practical questions that come from banking and telecommunications. The contributors are prominent within their field. The whole volume will be an attractive purchase for all number theorists, 'pure' or 'applied'.
The 3n+1 function T is defined by T(n)=n/2 for n even, and T(n)=(3n+1)/2 for n odd. The famous 3n+1 conjecture, which remains open, states that, for any starting number n>0, iterated application of T to n eventually produces 1. After a survey of theorems concerning the 3n+1 problem, the main focus of the book are 3n+1 predecessor sets. These are analyzed using, e.g., elementary number theory, combinatorics, asymptotic analysis, and abstract measure theory. The book is written for any mathematician interested in the 3n+1 problem, and in the wealth of mathematical ideas employed to attack it.
This volume aims to present a straightforward and easily accessible survey of the analytic theory of quadratic forms. Written at an elementary level, the book provides a sound basis from which the reader can study advanced works and undertake original research. Roughly half a century ago C.L. Siegel discovered a new type of automorphic forms in several variables in connection with his famous work on the analytic theory of quadratic forms. Since then Siegel modular forms have been studied extensively because of their significance in both automorphic functions in several complex variables and number theory. The comprehensive theory of automorphic forms to subgroups of algebraic groups and the recent arithmetical theory of modular forms illustrate these two aspects in an illuminating manner. The text is based on the author's lectures given over a number of years and is intended for a one semester graduate course, although it can serve equally well for self study . The only prerequisites are a knowledge of algebra, number theory and complex analysis.
The book is an introduction to the theory of cubic metaplectic forms on the 3-dimensional hyperbolic space and the author's research on cubic metaplectic forms on special linear and symplectic groups of rank 2. The topics include: Kubota and Bass-Milnor-Serre homomorphisms, cubic metaplectic Eisenstein series, cubic theta functions, Whittaker functions. A special method is developed and applied to find Fourier coefficients of the Eisenstein series and cubic theta functions. The book is intended for readers, with beginning graduate-level background, interested in further research in the theory of metaplectic forms and in possible applications.
This book contains 22 lectures presented at the final conference of the Ger man research program (Schwerpunktprogramm) Algorithmic Number The ory and Algebra 1991-1997, sponsored by the Deutsche Forschungsgemein schaft. The purpose of this research program and of the meeting was to bring together developers of computer algebra software and researchers using com putational methods to gain insight into experimental problems and theoret ical questions in algebra and number theory. The book gives an overview on algorithmic methods and on results ob tained during this period. This includes survey articles on the main research projects within the program: * algorithmic number theory emphasizing class field theory, constructive Galois theory, computational aspects of modular forms and of Drinfeld modules * computational algebraic geometry including real quantifier elimination and real algebraic geometry, and invariant theory of finite groups * computational aspects of presentations and representations of groups, especially finite groups of Lie type and their Heeke algebras, and of the isomorphism problem in group theory. Some of the articles illustrate the current state of computer algebra sys tems and program packages developed with support by the research pro gram, such as KANT and LiDIA for algebraic number theory, SINGULAR, RED LOG and INVAR for commutative algebra and invariant theory respec tively, and GAP, SYSYPHOS and CHEVIE for group theory and representation theory.
This volume contains selected contributions from a very successful meeting on Number Theory and Dynamical Systems held at the University of York in 1987. There are close and surprising connections between number theory and dynamical systems. One emerged last century from the study of the stability of the solar system where problems of small divisors associated with the near resonance of planetary frequencies arose. Previously the question of the stability of the solar system was answered in more general terms by the celebrated KAM theorem, in which the relationship between near resonance (and so Diophantine approximation) and stability is of central importance. Other examples of the connections involve the work of Szemeredi and Furstenberg, and Sprindzuk. As well as containing results on the relationship between number theory and dynamical systems, the book also includes some more speculative and exploratory work which should stimulate interest in different approaches to old problems. |
You may like...
High-Performance Computing Using FPGAs
Wim Vanderbauwhede, Khaled Benkrid
Hardcover
R6,662
Discovery Miles 66 620
Emergent Knowledge Strategies…
Ettore Bolisani, Constantin Bratianu
Hardcover
R3,849
Discovery Miles 38 490
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet
Paperback
R542
Discovery Miles 5 420
Social Networks and Surveillance for…
Tansel Oezyer, Sambit Bakshi, …
Hardcover
R1,408
Discovery Miles 14 080
Silicon Nanowire Transistors
Ahmet Bindal, Sotoudeh Hamedi-Hagh
Hardcover
|