![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory > General
This book discusses the p-adic modular forms, the eigencurve that parameterize them, and the p-adic L-functions one can associate to them. These theories and their generalizations to automorphic forms for group of higher ranks are of fundamental importance in number theory. For graduate students and newcomers to this field, the book provides a solid introduction to this highly active area of research. For experts, it will offer the convenience of collecting into one place foundational definitions and theorems with complete and self-contained proofs. Written in an engaging and educational style, the book also includes exercises and provides their solution.
This book explores various properties of quasimodular forms, especially their connections with Jacobi-like forms and automorphic pseudodifferential operators. The material that is essential to the subject is presented in sufficient detail, including necessary background on pseudodifferential operators, Lie algebras, etc., to make it accessible also to non-specialists. The book also covers a sufficiently broad range of illustrations of how the main themes of the book have occurred in various parts of mathematics to make it attractive to a wider audience. The book is intended for researchers and graduate students in number theory.
Number theory and algebra play an increasingly significant role in computing and communications, as evidenced by the striking applications of these subjects to such fields as cryptography and coding theory. This introductory book emphasizes algorithms and applications, such as cryptography and error correcting codes, and is accessible to a broad audience. The presentation alternates between theory and applications in order to motivate and illustrate the mathematics. The mathematical coverage includes the basics of number theory, abstract algebra and discrete probability theory. This edition now includes over 150 new exercises, ranging from the routine to the challenging, that flesh out the material presented in the body of the text, and which further develop the theory and present new applications. The material has also been reorganized to improve clarity of exposition and presentation. Ideal as a textbook for introductory courses in number theory and algebra, especially those geared towards computer science students.
This is the fourth in a series of proceedings of the Combinatorial and Additive Number Theory (CANT) conferences, based on talks from the 2019 and 2020 workshops at the City University of New York. The latter was held online due to the COVID-19 pandemic, and featured speakers from North and South America, Europe, and Asia. The 2020 Zoom conference was the largest CANT conference in terms of the number of both lectures and participants. These proceedings contain 25 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003 at the CUNY Graduate Center, the workshop surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Topics featured in this volume include sumsets, zero-sum sequences, minimal complements, analytic and prime number theory, Hausdorff dimension, combinatorial and discrete geometry, and Ramsey theory. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.
The key feature at this conference was the 33 invited papers from the world's leading number theorists. Talks were in three sessions: analytical number theory; arithmetical algebraic geometry; and diophantive approximation. Speakers included: F.Beukers (University of Utrecht); R. Heath-Brown (Oxford); H.L. Montgomery (Ann Arbor, Michigan); T. Nakahara (Saga University, Japan); Y. Zarhin (Academy of Science, USSR).
This book discusses regular powers and symbolic powers of ideals from three perspectives- algebra, combinatorics and geometry - and examines the interactions between them. It invites readers to explore the evolution of the set of associated primes of higher and higher powers of an ideal and explains the evolution of ideals associated with combinatorial objects like graphs or hypergraphs in terms of the original combinatorial objects. It also addresses similar questions concerning our understanding of the Castelnuovo-Mumford regularity of powers of combinatorially defined ideals in terms of the associated combinatorial data. From a more geometric point of view, the book considers how the relations between symbolic and regular powers can be interpreted in geometrical terms. Other topics covered include aspects of Waring type problems, symbolic powers of an ideal and their invariants (e.g., the Waldschmidt constant, the resurgence), and the persistence of associated primes.
In the English edition, the chapter on the Geometry of Numbers has been enlarged to include the important findings of H. Lenstraj furthermore, tried and tested examples and exercises have been included. The translator, Prof. Charles Thomas, has solved the difficult problem of the German text into English in an admirable way. He deserves transferring our 'Unreserved praise and special thailks. Finally, we would like to express our gratitude to Springer-Verlag, for their commitment to the publication of this English edition, and for the special care taken in its production. Vienna, March 1991 E. Hlawka J. SchoiBengeier R. Taschner Preface to the German Edition We have set ourselves two aims with the present book on number theory. On the one hand for a reader who has studied elementary number theory, and who has knowledge of analytic geometry, differential and integral calculus, together with the elements of complex variable theory, we wish to introduce basic results from the areas of the geometry of numbers, diophantine ap proximation, prime number theory, and the asymptotic calculation of number theoretic functions. However on the other hand for the student who has al ready studied analytic number theory, we also present results and principles of proof, which until now have barely if at all appeared in text books.
This book discusses special properties of integer sequences from a unique point of view. It generalizes common, well-known properties and connects them with sequences such as divisible sequences, Lucas sequences, Lehmer sequences, periods of sequences, lifting properties, and so on. The book presents theories derived by using elementary means and includes results not usually found in common number theory books. Considering the impact and usefulness of these theorems, the book also aims at being valuable for Olympiad level problem solving as well as regular research. This book will be of interest to students, researchers and faculty members alike.
Als mehrbandiges Nachschlagewerk ist das Springer-Handbuch der Mathematik in erster Linie fur wissenschaftliche Bibliotheken, akademische Institutionen und Firmen sowie interessierte Individualkunden in Forschung und Lehregedacht. Es erganzt das einbandige themenumfassende Springer-Taschenbuch der Mathematik (ehemaliger Titel Teubner-Taschenbuch der Mathematik), das sich in seiner begrenzten Stoffauswahl besonders an Studierende richtet.Teil IV des Springer-Handbuchs enthalt die folgenden Zusatzkapitel zum Springer-Taschenbuch: Hohere Analysis, Lineare sowie Nichtlineare Funktionalanalysis und ihre Anwendungen, Dynamische Systeme, Nichtlineare partielle Differentialgleichungen, Mannigfaltigkeiten, Riemannsche Geometrie und allgemeine Relativitatstheorie, Liegruppen, Liealgebren und Elementarteilchen, Topologie, Krummung und Analysis.
In the late sixties Matiyasevich, building on the work of Davis, Putnam and Robinson, showed that there was no algorithm to determine whether a polynomial equation in several variables and with integer coefficients has integer solutions. Hilbert gave finding such an algorithm as problem number ten on a list he presented at an international congress of mathematicians in 1900. Thus the problem, which has become known as Hilbert's Tenth Problem, was shown to be unsolvable. This book presents an account of results extending Hilbert's Tenth Problem to integrally closed subrings of global fields including, in the function field case, the fields themselves. While written from the point of view of Algebraic Number Theory, the book includes chapters on Mazur's conjectures on topology of rational points and Poonen's elliptic curve method for constructing a Diophatine model of rational integers over a ???very large??? subring of the field of rational numbers.
This book offers a unique account on the life and works of Srinivasa Ramanujan-often hailed as the greatest "natural" mathematical genius. Sharing valuable insights into the many stages of Ramanujan's life, this book provides glimpses into his prolific research on highly composite numbers, partitions, continued fractions, mock theta functions, arithmetic, and hypergeometric functions which led the author to discover a new summation theorem. It also includes the list of Ramanujan's collected papers, letters and other material present at the Wren Library, Trinity College in Cambridge, UK. This book is a valuable resource for all readers interested in Ramanujan's life, work and indelible contributions to mathematics.
This book provides the first thorough treatment of effective results and methods for Diophantine equations over finitely generated domains. Compiling diverse results and techniques from papers written in recent decades, the text includes an in-depth analysis of classical equations including unit equations, Thue equations, hyper- and superelliptic equations, the Catalan equation, discriminant equations and decomposable form equations. The majority of results are proved in a quantitative form, giving effective bounds on the sizes of the solutions. The necessary techniques from Diophantine approximation and commutative algebra are all explained in detail without requiring any specialized knowledge on the topic, enabling readers from beginning graduate students to experts to prove effective finiteness results for various further classes of Diophantine equations.
This book is an outgrowth of the conference "Regulators IV: An International Conference on Arithmetic L-functions and Differential Geometric Methods" that was held in Paris in May 2016. Gathering contributions by leading experts in the field ranging from original surveys to pure research articles, this volume provides comprehensive coverage of the front most developments in the field of regulator maps. Key topics covered are: * Additive polylogarithms * Analytic torsions * Chabauty-Kim theory * Local Grothendieck-Riemann-Roch theorems * Periods * Syntomic regulator The book contains contributions by M. Asakura, J. Balakrishnan, A. Besser, A. Best, F. Bianchi, O. Gregory, A. Langer, B. Lawrence, X. Ma, S. Muller, N. Otsubo, J. Raimbault, W. Raskin, D. Roessler, S. Shen, N. Triantafi llou, S. UEnver and J. Vonk.
A series of three symposia took place on the topic of trace formulas, each with an accompanying proceedings volume. The present volume is the third and final in this series and focuses on relative trace formulas in relation to special values of L-functions, integral representations, arithmetic cycles, theta correspondence and branching laws. The first volume focused on Arthur's trace formula, and the second volume focused on methods from algebraic geometry and representation theory. The three proceedings volumes have provided a snapshot of some of the current research, in the hope of stimulating further research on these topics. The collegial format of the symposia allowed a homogeneous set of experts to isolate key difficulties going forward and to collectively assess the feasibility of diverse approaches.
This authoritative volume in honor of Alain Connes, the foremost architect of Noncommutative Geometry, presents the state-of-the art in the subject. The book features an amalgam of invited survey and research papers that will no doubt be accessed, read, and referred to, for several decades to come. The pertinence and potency of new concepts and methods are concretely illustrated in each contribution. Much of the content is a direct outgrowth of the Noncommutative Geometry conference, held March 23-April 7, 2017, in Shanghai, China. The conference covered the latest research and future areas of potential exploration surrounding topology and physics, number theory, as well as index theory and its ramifications in geometry.
Als mehrbandiges Nachschlagewerk ist das Springer-Handbuch der Mathematik in erster Linie fur wissenschaftliche Bibliotheken, akademische Institutionen und Firmen sowie interessierte Individualkunden in Forschung und Lehregedacht. Es erganzt das einbandige themenumfassende Springer-Taschenbuch der Mathematik (ehemaliger Titel Teubner-Taschenbuch der Mathematik), das sich in seiner begrenzten Stoffauswahl besonders an Studierende richtet. Teil I des Springer-Handbuchs enthalt neben dem einfuhrenden Kapitel und dem Kapitel 1 des Springer-Taschenbuchs zusatzliches Material zur hoheren komplexen Funktionentheorie und zur allgemeinen Theorie der partiellen Differentialgleichungen.
This edited volume presents state-of-the-art developments in various areas in which Harmonic Analysis is applied. Contributions cover a variety of different topics and problems treated such as structure and optimization in computational harmonic analysis, sampling and approximation in shift invariant subspaces of L2( ), optimal rank one matrix decomposition, the Riemann Hypothesis, large sets avoiding rough patterns, Hardy Littlewood series, Navier-Stokes equations, sleep dynamics exploration and automatic annotation by combining modern harmonic analysis tools, harmonic functions in slabs and half-spaces, Andoni -Krauthgamer -Razenshteyn characterization of sketchable norms fails for sketchable metrics, random matrix theory, multiplicative completion of redundant systems in Hilbert and Banach function spaces. Efforts have been made to ensure that the content of the book constitutes a valuable resource for graduate students as well as senior researchers working on Harmonic Analysis and its various interconnections with related areas.
This textbook is intended to serve as a one-semester introductory course in number theory and in this second edition it has been revised throughout and many new exercises have been added. Historical perspective is included and emphasis is given to some of the subject's applied aspects; in particular the field of cryptography is highlighted. At the heart of the book are the major number theoretic accomplishments of Euclid, Fermat, Gauss, Legendre, and Euler, and to fully illustrate the properties of numbers and concepts developed in the text, a wealth of exercises have been included. It is assumed that the reader will have 'pencil in hand' and ready access to a calculator or computer. For students new to number theory, whatever their background, this is a stimulating and entertaining introduction to the subject.
This textbook is intended to serve as a one-semester introductory course in number theory and in this second edition it has been revised throughout and many new exercises have been added. Historical perspective is included and emphasis is given to some of the subject's applied aspects; in particular the field of cryptography is highlighted. At the heart of the book are the major number theoretic accomplishments of Euclid, Fermat, Gauss, Legendre, and Euler, and to fully illustrate the properties of numbers and concepts developed in the text, a wealth of exercises have been included. It is assumed that the reader will have 'pencil in hand' and ready access to a calculator or computer. For students new to number theory, whatever their background, this is a stimulating and entertaining introduction to the subject.
This volume explores the rich interplay between number theory and wireless communications, reviewing the surprisingly deep connections between these fields and presenting new research directions to inspire future research. The contributions of this volume stem from the Workshop on Interactions between Number Theory and Wireless Communication held at the University of York in 2016. The chapters, written by leading experts in their respective fields, provide direct overviews of highly exciting current research developments. The topics discussed include metric Diophantine approximation, geometry of numbers, homogeneous dynamics, algebraic lattices and codes, network and channel coding, and interference alignment. The book is edited by experts working in number theory and communication theory. It thus provides unique insight into key concepts, cutting-edge results, and modern techniques that play an essential role in contemporary research. Great effort has been made to present the material in a manner that is accessible to new researchers, including PhD students. The book will also be essential reading for established researchers working in number theory or wireless communications looking to broaden their outlook and contribute to this emerging interdisciplinary area.
This problem book gathers together 15 problem sets on analytic number theory that can be profitably approached by anyone from advanced high school students to those pursuing graduate studies. It emerged from a 5-week course taught by the first author as part of the 2019 Ross/Asia Mathematics Program held from July 7 to August 9 in Zhenjiang, China. While it is recommended that the reader has a solid background in mathematical problem solving (as from training for mathematical contests), no possession of advanced subject-matter knowledge is assumed. Most of the solutions require nothing more than elementary number theory and a good grasp of calculus. Problems touch at key topics like the value-distribution of arithmetic functions, the distribution of prime numbers, the distribution of squares and nonsquares modulo a prime number, Dirichlet's theorem on primes in arithmetic progressions, and more. This book is suitable for any student with a special interest in developing problem-solving skills in analytic number theory. It will be an invaluable aid to lecturers and students as a supplementary text for introductory Analytic Number Theory courses at both the undergraduate and graduate level.
Algebraic numbers can approximate and classify any real number. Here, the author gathers together results about such approximations and classifications. Written for a broad audience, the book is accessible and self-contained, with complete and detailed proofs. Starting from continued fractions and Khintchine's theorem, Bugeaud introduces a variety of techniques, ranging from explicit constructions to metric number theory, including the theory of Hausdorff dimension. So armed, the reader is led to such celebrated advanced results as the proof of Mahler's conjecture on S-numbers, the Jarnik-Besicovitch theorem, and the existence of T-numbers. Brief consideration is given both to the p-adic and the formal power series cases. Thus the book can be used for graduate courses on Diophantine approximation (some 40 exercises are supplied), or as an introduction for non-experts. Specialists will appreciate the collection of over 50 open problems and the rich and comprehensive list of more than 600 references.
Mahler measure, a height function for polynomials, is the central theme of this book. It has many interesting properties, obtained by algebraic, analytic and combinatorial methods. It is the subject of several longstanding unsolved questions, such as Lehmer's Problem (1933) and Boyd's Conjecture (1981). This book contains a wide range of results on Mahler measure. Some of the results are very recent, such as Dimitrov's proof of the Schinzel-Zassenhaus Conjecture. Other known results are included with new, streamlined proofs. Robinson's Conjectures (1965) for cyclotomic integers, and their associated Cassels height function, are also discussed, for the first time in a book.One way to study algebraic integers is to associate them with combinatorial objects, such as integer matrices. In some of these combinatorial settings the analogues of several notorious open problems have been solved, and the book sets out this recent work. Many Mahler measure results are proved for restricted sets of polynomials, such as for totally real polynomials, and reciprocal polynomials of integer symmetric as well as symmetrizable matrices. For reference, the book includes appendices providing necessary background from algebraic number theory, graph theory, and other prerequisites, along with tables of one- and two-variable integer polynomials with small Mahler measure. All theorems are well motivated and presented in an accessible way. Numerous exercises at various levels are given, including some for computer programming. A wide range of stimulating open problems is also included. At the end of each chapter there is a glossary of newly introduced concepts and definitions. Around the Unit Circle is written in a friendly, lucid, enjoyable style, without sacrificing mathematical rigour. It is intended for lecture courses at the graduate level, and will also be a valuable reference for researchers interested in Mahler measure. Essentially self-contained, this textbook should also be accessible to well-prepared upper-level undergraduates.
This book is an attempt to describe the gradual development of the major schools of research on number theory in South India, Punjab, Mumbai, Bengal, and Bihar-including the establishment of Tata Institute of Fundamental Research (TIFR), Mumbai, a landmark event in the history of research of number theory in India. Research on number theory in India during modern times started with the advent of the iconic genius Srinivasa Ramanujan, inspiring mathematicians around the world. This book discusses the national and international impact of the research made by Indian number theorists. It also includes a carefully compiled, comprehensive bibliography of major 20th century Indian number theorists making this book important from the standpoint of historic documentation and a valuable resource for researchers of the field for their literature survey. This book also briefly discusses the importance of number theory in the modern world of mathematics, including applications of the results developed by indigenous number theorists in practical fields. Since the book is written from the viewpoint of the history of science, technical jargon and mathematical expressions have been avoided as much as possible. |
You may like...
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
|