0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (54)
  • R250 - R500 (67)
  • R500+ (1,794)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Mathematics > Number theory > General

Analytic Number Theory - Proceedings of a Conference in Honor of Paul T. Bateman (Paperback, Softcover reprint of the original... Analytic Number Theory - Proceedings of a Conference in Honor of Paul T. Bateman (Paperback, Softcover reprint of the original 1st ed. 1990)
B. Berndt
R2,947 Discovery Miles 29 470 Ships in 10 - 15 working days

On April 25-27, 1989, over a hundred mathematicians, including eleven from abroad, gathered at the University of Illinois Conference Center at Allerton Park for a major conference on analytic number theory. The occa sion marked the seventieth birthday and impending (official) retirement of Paul T. Bateman, a prominent number theorist and member of the mathe matics faculty at the University of Illinois for almost forty years. For fifteen of these years, he served as head of the mathematics department. The conference featured a total of fifty-four talks, including ten in vited lectures by H. Delange, P. Erdos, H. Iwaniec, M. Knopp, M. Mendes France, H. L. Montgomery, C. Pomerance, W. Schmidt, H. Stark, and R. C. Vaughan. This volume represents the contents of thirty of these talks as well as two further contributions. The papers span a wide range of topics in number theory, with a majority in analytic number theory."

Cyclotomic Fields (Paperback, Softcover reprint of the original 1st ed. 1978): S. Lang Cyclotomic Fields (Paperback, Softcover reprint of the original 1st ed. 1978)
S. Lang
R1,515 Discovery Miles 15 150 Ships in 10 - 15 working days

Kummer's work on cyclotomic fields paved the way for the development of algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert, Takagi, Artin and others. However, the success of this general theory has tended to obscure special facts proved by Kummer about cyclotomic fields which lie deeper than the general theory. For a long period in the 20th century this aspect of Kummer's work seems to have been largely forgotten, except for a few papers, among which are those by Pollaczek [Po], Artin-Hasse [A-H] and Vandiver [Va]. In the mid 1950's, the theory of cyclotomic fields was taken up again by Iwasawa and Leopoldt. Iwasawa viewed cyclotomic fields as being analogues for number fields of the constant field extensions of algebraic geometry, and wrote a great sequence of papers investigating towers of cyclotomic fields, and more generally, Galois extensions of number fields whose Galois group is isomorphic to the additive group of p-adic integers. Leopoldt concentrated on a fixed cyclotomic field, and established various p-adic analogues of the classical complex analytic class number formulas. In particular, this led him to introduce, with Kubota, p-adic analogues of the complex L-functions attached to cyclotomic extensions of the rationals. Finally, in the late 1960's, Iwasawa [Iw 1 I] . made the fundamental discovery that there was a close connection between his work on towers of cyclotomic fields and these p-adic L-functions of Leopoldt-Kubota.

Complex Multiplication (Paperback, Softcover reprint of the original 1st ed. 1983): S. Lang Complex Multiplication (Paperback, Softcover reprint of the original 1st ed. 1983)
S. Lang
R2,844 Discovery Miles 28 440 Ships in 10 - 15 working days

The small book by Shimura-Taniyama on the subject of complex multi is a classic. It gives the results obtained by them (and some by Weil) plication in the higher dimensional case, generalizing in a non-trivial way the method of Deuring for elliptic curves, by reduction mod p. Partly through the work of Shimura himself (cf. [Sh 1] [Sh 2], and [Sh 5]), and some others (Serre, Tate, Kubota, Ribet, Deligne etc.) it is possible today to make a more snappy and extensive presentation of the fundamental results than was possible in 1961. Several persons have found my lecture notes on this subject useful to them, and so I have decided to publish this short book to make them more widely available. Readers acquainted with the standard theory of abelian varieties, and who wish to get rapidly an idea of the fundamental facts of complex multi plication, are advised to look first at the two main theorems, Chapter 3, 6 and Chapter 4, 1, as well as the rest of Chapter 4. The applications of Chapter 6 could also be profitably read early. I am much indebted to N. Schappacher for a careful reading of the manu script resulting in a number of useful suggestions. S. LANG Contents CHAPTER 1 Analytic Complex Multiplication 4 I. Positive Definite Involutions . . . 6 2. CM Types and Subfields. . . . . 8 3. Application to Abelian Manifolds. 4. Construction of Abelian Manifolds with CM 14 21 5. Reflex of a CM Type . . . . .

Mathematical Physics of Quantum Wires and Devices - From Spectral Resonances to Anderson Localization (Paperback, Softcover... Mathematical Physics of Quantum Wires and Devices - From Spectral Resonances to Anderson Localization (Paperback, Softcover reprint of hardcover 1st ed. 2000)
N. E. Hurt
R1,529 Discovery Miles 15 290 Ships in 10 - 15 working days

This monograph on quantum wires and quantum devices is a companion vol ume to the author's Quantum Chaos and Mesoscopic Systems (Kluwer, Dordrecht, 1997). The goal of this work is to present to the reader the mathematical physics which has arisen in the study of these systems. The course which I have taken in this volume is to juxtapose the current work on the mathematical physics of quantum devices and the details behind the work so that the reader can gain an understanding of the physics, and where possible the open problems which re main in the development of a complete mathematical description of the devices. I have attempted to include sufficient background and references so that the reader can understand the limitations of the current methods and have direction to the original material for the research on the physics of these devices. As in the earlier volume, the monograph is a panoramic survey of the mathe matical physics of quantum wires and devices. Detailed proofs are kept to a min imum, with outlines of the principal steps and references to the primary sources as required. The survey is very broad to give a general development to a variety of problems in quantum devices, not a specialty volume."

Algebras and Orders (Paperback, Softcover reprint of hardcover 1st ed. 1993): Ivo G. Rosenberg, Gert Sabidussi Algebras and Orders (Paperback, Softcover reprint of hardcover 1st ed. 1993)
Ivo G. Rosenberg, Gert Sabidussi
R13,771 Discovery Miles 137 710 Ships in 10 - 15 working days

In the summer of 1991 the Department of Mathematics and Statistics of the Universite de Montreal was fortunate to host the NATO Advanced Study Institute "Algebras and Orders" as its 30th Seminaire de mathematiques superieures (SMS), a summer school with a long tradition and well-established reputation. This book contains the contributions of the invited speakers. Universal algebra- which established itself only in the 1930's- grew from traditional algebra (e.g., groups, modules, rings and lattices) and logic (e.g., propositional calculus, model theory and the theory of relations). It started by extending results from these fields but by now it is a well-established and dynamic discipline in its own right. One of the objectives of the ASI was to cover a broad spectrum of topics in this field, and to put in evidence the natural links to, and interactions with, boolean algebra, lattice theory, topology, graphs, relations, automata, theoretical computer science and (partial) orders. The theory of orders is a relatively young and vigorous discipline sharing certain topics as well as many researchers and meetings with universal algebra and lattice theory. W. Taylor surveyed the abstract clone theory which formalizes the process of compos ing operations (i.e., the formation of term operations) of an algebra as a special category with countably many objects, and leading naturally to the interpretation and equivalence of varieties."

p-Adic Valued Distributions in Mathematical Physics (Paperback, Softcover reprint of hardcover 1st ed. 1994): Andrei Y.... p-Adic Valued Distributions in Mathematical Physics (Paperback, Softcover reprint of hardcover 1st ed. 1994)
Andrei Y. Khrennikov
R2,873 Discovery Miles 28 730 Ships in 10 - 15 working days

Numbers ... , natural, rational, real, complex, p-adic .... What do you know about p-adic numbers? Probably, you have never used any p-adic (nonrational) number before now. I was in the same situation few years ago. p-adic numbers were considered as an exotic part of pure mathematics without any application. I have also used only real and complex numbers in my investigations in functional analysis and its applications to the quantum field theory and I was sure that these number fields can be a basis of every physical model generated by nature. But recently new models of the quantum physics were proposed on the basis of p-adic numbers field Qp. What are p-adic numbers, p-adic analysis, p-adic physics, p-adic probability? p-adic numbers were introduced by K. Hensel (1904) in connection with problems of the pure theory of numbers. The construction of Qp is very similar to the construction of (p is a fixed prime number, p = 2,3,5, ... ,127, ... ). Both these number fields are completions of the field of rational numbers Q. But another valuation 1 . Ip is introduced on Q instead of the usual real valuation 1 . I* We get an infinite sequence of non isomorphic completions of Q : Q2, Q3, ... , Q127, ... , IR = Qoo* These fields are the only possibilities to com plete Q according to the famous theorem of Ostrowsky.

Number Theory and Modular Forms - Papers in Memory of Robert A. Rankin (Paperback, Softcover reprint of hardcover 1st ed.... Number Theory and Modular Forms - Papers in Memory of Robert A. Rankin (Paperback, Softcover reprint of hardcover 1st ed. 2003)
Bruce C. Berndt, Ken Ono
R2,905 Discovery Miles 29 050 Ships in 10 - 15 working days

Robert A. Rankin, one of the world's foremost authorities on modular forms and a founding editor of The Ramanujan Journal, died on January 27, 2001, at the age of 85. Rankin had broad interests and contributed fundamental papers in a wide variety of areas within number theory, geometry, analysis, and algebra. To commemorate Rankin's life and work, the editors have collected together 25 papers by several eminent mathematicians reflecting Rankin's extensive range of interests within number theory. Many of these papers reflect Rankin's primary focus in modular forms. It is the editors' fervent hope that mathematicians will be stimulated by these papers and gain a greater appreciation for Rankin's contributions to mathematics.
This volume would be an inspiration to students and researchers in the areas of number theory and modular forms.

Diophantine Approximation on Linear Algebraic Groups - Transcendence Properties of the Exponential Function in Several... Diophantine Approximation on Linear Algebraic Groups - Transcendence Properties of the Exponential Function in Several Variables (Paperback, Softcover reprint of hardcover 1st ed. 2000)
Michel Waldschmidt
R2,981 Discovery Miles 29 810 Ships in 10 - 15 working days

The theory of transcendental numbers is closely related to the study of diophantine approximation. This book deals with values of the usual exponential function ez: a central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. Two chapters provide complete and simplified proofs of zero estimates (due to Philippon) on linear algebraic groups.

Many Rational Points - Coding Theory and Algebraic Geometry (Paperback, 1st ed. Softcover of orig. ed. 2004): N. E. Hurt Many Rational Points - Coding Theory and Algebraic Geometry (Paperback, 1st ed. Softcover of orig. ed. 2004)
N. E. Hurt
R2,894 Discovery Miles 28 940 Ships in 10 - 15 working days

2 Triangle Groups: An Introduction 279 3 Elementary Shimura Curves 281 4 Examples of Shimura Curves 282 5 Congruence Zeta Functions 283 6 Diophantine Properties of Shimura Curves 284 7 Klein Quartic 285 8 Supersingular Points 289 Towers of Elkies 9 289 7. CRYPTOGRAPHY AND APPLICATIONS 291 1 Introduction 291 Discrete Logarithm Problem 2 291 Curves for Public-Key Cryptosystems 3 295 Hyperelliptic Curve Cryptosystems 4 297 CM-Method 5 299 6 Cryptographic Exponent 300 7 Constructive Descent 302 8 Gaudry and Harley Algorithm 306 9 Picard Jacobians 307 Drinfeld Module Based Public Key Cryptosystems 10 308 11 Drinfeld Modules and One Way Functions 308 12 Shimura's Map 309 13 Modular Jacobians of Genus 2 Curves 310 Modular Jacobian Surfaces 14 312 15 Modular Curves of Genus Two 313 16 Hecke Operators 314 8. REFERENCES 317 345 Index Xll Preface The history of counting points on curves over finite fields is very ex- tensive, starting with the work of Gauss in 1801 and continuing with the work of Artin, Schmidt, Hasse and Weil in their study of curves and the related zeta functions Zx(t), where m Zx(t) = exp (2: N t ) m m 2': 1 m with N = #X(F qm). If X is a curve of genus g, Weil's conjectures m state that L(t) Zx(t) = (1 - t)(l - qt) where L(t) = rr~!l (1 - O'.

Fundamentals of Diophantine Geometry (Paperback, Softcover reprint of hardcover 1st ed. 1983): S. Lang Fundamentals of Diophantine Geometry (Paperback, Softcover reprint of hardcover 1st ed. 1983)
S. Lang
R2,530 Discovery Miles 25 300 Ships in 10 - 15 working days

Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.

Analytic and Elementary Number Theory - A Tribute to Mathematical Legend Paul Erdos (Paperback, Softcover reprint of hardcover... Analytic and Elementary Number Theory - A Tribute to Mathematical Legend Paul Erdos (Paperback, Softcover reprint of hardcover 1st ed. 1998)
Krishnaswami Alladi, P.D.T.A. Elliott, Andrew Granville, G. Tenenbaum
R2,875 Discovery Miles 28 750 Ships in 10 - 15 working days

This volume contains a collection of papers in Analytic and Elementary Number Theory in memory of Professor Paul Erd s, one of the greatest mathematicians of this century. Written by many leading researchers, the papers deal with the most recent advances in a wide variety of topics, including arithmetical functions, prime numbers, the Riemann zeta function, probabilistic number theory, properties of integer sequences, modular forms, partitions, and q-series. Audience: Researchers and students of number theory, analysis, combinatorics and modular forms will find this volume to be stimulating.

Finite Fields: Theory and Computation - The Meeting Point of Number Theory, Computer Science, Coding Theory and Cryptography... Finite Fields: Theory and Computation - The Meeting Point of Number Theory, Computer Science, Coding Theory and Cryptography (Paperback, Softcover reprint of hardcover 1st ed. 1999)
Igor Shparlinski
R5,671 Discovery Miles 56 710 Ships in 10 - 15 working days

This book is mainly devoted to some computational and algorithmic problems in finite fields such as, for example, polynomial factorization, finding irreducible and primitive polynomials, the distribution of these primitive polynomials and of primitive points on elliptic curves, constructing bases of various types and new applications of finite fields to other areas of mathematics. For completeness we in clude two special chapters on some recent advances and applications of the theory of congruences (optimal coefficients, congruential pseudo-random number gener ators, modular arithmetic, etc.) and computational number theory (primality testing, factoring integers, computation in algebraic number theory, etc.). The problems considered here have many applications in Computer Science, Cod ing Theory, Cryptography, Numerical Methods, and so on. There are a few books devoted to more general questions, but the results contained in this book have not till now been collected under one cover. In the present work the author has attempted to point out new links among different areas of the theory of finite fields. It contains many very important results which previously could be found only in widely scattered and hardly available conference proceedings and journals. In particular, we extensively review results which originally appeared only in Russian, and are not well known to mathematicians outside the former USSR."

Reciprocity Laws - From Euler to Eisenstein (Paperback, Softcover reprint of hardcover 1st ed. 2000): Franz Lemmermeyer Reciprocity Laws - From Euler to Eisenstein (Paperback, Softcover reprint of hardcover 1st ed. 2000)
Franz Lemmermeyer
R4,166 Discovery Miles 41 660 Ships in 10 - 15 working days

This book covers the development of reciprocity laws, starting from conjectures of Euler and discussing the contributions of Legendre, Gauss, Dirichlet, Jacobi, and Eisenstein. Readers knowledgeable in basic algebraic number theory and Galois theory will find detailed discussions of the reciprocity laws for quadratic, cubic, quartic, sextic and octic residues, rational reciprocity laws, and Eisensteins reciprocity law. An extensive bibliography will be of interest to readers interested in the history of reciprocity laws or in the current research in this area.

The Lerch zeta-function (Paperback, 1st ed. Softcover of orig. ed. 2003): Antanas Laurincikas, Ramunas Garunkstis The Lerch zeta-function (Paperback, 1st ed. Softcover of orig. ed. 2003)
Antanas Laurincikas, Ramunas Garunkstis
R1,521 Discovery Miles 15 210 Ships in 10 - 15 working days

The Lerch zeta-function is the first monograph on this topic, which is a generalization of the classic Riemann, and Hurwitz zeta-functions. Although analytic results have been presented previously in various monographs on zeta-functions, this is the first book containing both analytic and probability theory of Lerch zeta-functions.

The book starts with classical analytical theory (Euler gamma-functions, functional equation, mean square). The majority of the presented results are new: on approximate functional equations and its applications and on zero distribution (zero-free regions, number of nontrivial zeros etc). Special attention is given to limit theorems in the sense of the weak convergence of probability measures for the Lerch zeta-function. From limit theorems in the space of analytic functions the universitality and functional independence is derived. In this respect the book continues the research of the first author presented in the monograph Limit Theorems for the Riemann zeta-function.

This book will be useful to researchers and graduate students working in analytic and probabilistic number theory, and can also be used as a textbook for postgraduate students.

Resolution of Singularities of Embedded Algebraic Surfaces (Paperback, Softcover reprint of hardcover 2nd ed. 1998): Shreeram... Resolution of Singularities of Embedded Algebraic Surfaces (Paperback, Softcover reprint of hardcover 2nd ed. 1998)
Shreeram S. Abhyankar
R2,882 Discovery Miles 28 820 Ships in 10 - 15 working days

The common solutions of a finite number of polynomial equations in a finite number of variables constitute an algebraic variety. The degrees of freedom of a moving point on the variety is the dimension of the variety. A one-dimensional variety is a curve and a two-dimensional variety is a surface. A three-dimensional variety may be called asolid. Most points of a variety are simple points. Singularities are special points, or points of multiplicity greater than one. Points of multiplicity two are double points, points of multiplicity three are tripie points, and so on. A nodal point of a curve is a double point where the curve crosses itself, such as the alpha curve. A cusp is a double point where the curve has a beak. The vertex of a cone provides an example of a surface singularity. A reversible change of variables gives abirational transformation of a variety. Singularities of a variety may be resolved by birational transformations.

Lie Groups and Lie Algebras II - Discrete Subgroups of Lie Groups and Cohomologies of Lie Groups and Lie Algebras (Paperback,... Lie Groups and Lie Algebras II - Discrete Subgroups of Lie Groups and Cohomologies of Lie Groups and Lie Algebras (Paperback, Softcover reprint of hardcover 1st ed. 2000)
A.L. Onishchik; Translated by J. Danskin; Contributions by B.L. Feigin; Edited by E.B. Vinberg; Contributions by D. B. Fuchs, …
R2,873 Discovery Miles 28 730 Ships in 10 - 15 working days

A systematic survey of all the basic results on the theory of discrete subgroups of Lie groups, presented in a convenient form for users. The book makes the theory accessible to a wide audience, and will be a standard reference for many years to come.

Coding Theory and Number Theory (Paperback, Softcover reprint of hardcover 1st ed. 2003): T. Hiramatsu, Gunter Koehler Coding Theory and Number Theory (Paperback, Softcover reprint of hardcover 1st ed. 2003)
T. Hiramatsu, Gunter Koehler
R1,490 Discovery Miles 14 900 Ships in 10 - 15 working days

This book grew out of our lectures given in the Oberseminar on 'Cod ing Theory and Number Theory' at the Mathematics Institute of the Wiirzburg University in the Summer Semester, 2001. The coding the ory combines mathematical elegance and some engineering problems to an unusual degree. The major advantage of studying coding theory is the beauty of this particular combination of mathematics and engineering. In this book we wish to introduce some practical problems to the math ematician and to address these as an essential part of the development of modern number theory. The book consists of five chapters and an appendix. Chapter 1 may mostly be dropped from an introductory course of linear codes. In Chap ter 2 we discuss some relations between the number of solutions of a diagonal equation over finite fields and the weight distribution of cyclic codes. Chapter 3 begins by reviewing some basic facts from elliptic curves over finite fields and modular forms, and shows that the weight distribution of the Melas codes is represented by means of the trace of the Hecke operators acting on the space of cusp forms. Chapter 4 is a systematic study of the algebraic-geometric codes. For a long time, the study of algebraic curves over finite fields was the province of pure mathematicians. In the period 1977 - 1982, V. D. Goppa discovered an amazing connection between the theory of algebraic curves over fi nite fields and the theory of q-ary codes."

Number Theory and Applications (Paperback, Softcover reprint of hardcover 1st ed. 1989): Richard A. Mollin Number Theory and Applications (Paperback, Softcover reprint of hardcover 1st ed. 1989)
Richard A. Mollin
R13,789 Discovery Miles 137 890 Ships in 10 - 15 working days

Proceedings of the NATO Advanced Study Institute, Banff Centre, Canada, April 27-May 5, 1988

Elements of Number Theory (Paperback, Softcover reprint of hardcover 1st ed. 2003): John Stillwell Elements of Number Theory (Paperback, Softcover reprint of hardcover 1st ed. 2003)
John Stillwell
R1,514 Discovery Miles 15 140 Ships in 10 - 15 working days

Solutions of equations in integers is the central problem of number theory and is the focus of this book. The amount of material is suitable for a one-semester course. The author has tried to avoid the ad hoc proofs in favor of unifying ideas that work in many situations. There are exercises at the end of almost every section, so that each new idea or proof receives immediate reinforcement.

Real and Complex Dynamical Systems (Paperback, Softcover reprint of hardcover 1st ed. 1995): B. Branner, Poul Hjorth Real and Complex Dynamical Systems (Paperback, Softcover reprint of hardcover 1st ed. 1995)
B. Branner, Poul Hjorth
R6,335 Discovery Miles 63 350 Ships in 10 - 15 working days

This volume contains edited versions of 11 contributions given by main speakers at the NATO Advanced Study Institute on lReal and Complex Dynamical Systems in Hiller0d, Denmark, June 20th - July 2nd, 1993. The vision of the institute was to illustrate the interplay between two important fields of Mathematics: Real Dynamical Systems and Complex Dynamical Systems. The interaction between these two fields has been growing over the years. Problems in Real Dynamical Systems have recently been solved using complex tools in the real or by extension to the complex. In return, problems in Complex Dynamical Systems have been settled using results from Real Dynamical Systems. The programme of the institute was to examine the state of the art of central parts of both Real and Complex Dynamical Systems, to reinforce contact between the two aspects of the theory and to make recent progress in each accessible to a larger group of mathematicians.

The Book of Numbers (Paperback, Softcover reprint of the original 1st ed. 1996): John H. Conway, Richard Guy The Book of Numbers (Paperback, Softcover reprint of the original 1st ed. 1996)
John H. Conway, Richard Guy
R1,409 R1,161 Discovery Miles 11 610 Save R248 (18%) Ships in 10 - 15 working days

"...the great feature of the book is that anyone can read it without excessive head scratching...You'll find plenty here to keep you occupied, amused, and informed. Buy, dip in, wallow." -IAN STEWART, NEW SCIENTIST "...a delightful look at numbers and their roles in everything from language to flowers to the imagination." -SCIENCE NEWS "...a fun and fascinating tour of numerical topics and concepts. It will have readers contemplating ideas they might never have thought were understandable or even possible." -WISCONSIN BOOKWATCH "This popularization of number theory looks like another classic." -LIBRARY JOURNAL

Arithmetic Functions and Integer Products (Paperback, Softcover reprint of the original 1st ed. 1985): P.D.T.A. Elliott Arithmetic Functions and Integer Products (Paperback, Softcover reprint of the original 1st ed. 1985)
P.D.T.A. Elliott
R1,575 Discovery Miles 15 750 Ships in 10 - 15 working days

Every positive integer m has a product representation of the form where v, k and the ni are positive integers, and each Ei = +/- I. A value can be given for v which is uniform in the m. A representation can be computed so that no ni exceeds a certain fixed power of 2m, and the number k of terms needed does not exceed a fixed power of log 2m. Consider next the collection of finite probability spaces whose associated measures assume only rational values. Let hex) be a real-valued function which measures the information in an event, depending only upon the probability x with which that event occurs. Assuming hex) to be non negative, and to satisfy certain standard properties, it must have the form -A(x log x + (I - x) 10g(I -x". Except for a renormalization this is the well-known function of Shannon. What do these results have in common? They both apply the theory of arithmetic functions. The two widest classes of arithmetic functions are the real-valued additive and the complex-valued multiplicative functions. Beginning in the thirties of this century, the work of Erdos, Kac, Kubilius, Turan and others gave a discipline to the study of the general value distribution of arithmetic func tions by the introduction of ideas, methods and results from the theory of Probability. I gave an account of the resulting extensive and still developing branch of Number Theory in volumes 239/240 of this series, under the title Probabilistic Number Theory.

Lectures on the Geometry of Numbers (Paperback, Softcover reprint of hardcover 1st ed. 1989): Komaravolu Chandrasekharan Lectures on the Geometry of Numbers (Paperback, Softcover reprint of hardcover 1st ed. 1989)
Komaravolu Chandrasekharan; Carl Ludwig Siegel; Assisted by Rudolf Suter, B. Friedman
R1,487 Discovery Miles 14 870 Ships in 10 - 15 working days

Carl Ludwig Siegel gave a course of lectures on the Geometry of Numbers at New York University during the academic year 1945-46, when there were hardly any books on the subject other than Minkowski's original one. This volume stems from Siegel's requirements of accuracy in detail, both in the text and in the illustrations, but involving no changes in the structure and style of the lectures as originally delivered. This book is an enticing introduction to Minkowski's great work. It also reveals the workings of a remarkable mind, such as Siegel's with its precision and power and aesthetic charm. It is of interest to the aspiring as well as the established mathematician, with its unique blend of arithmetic, algebra, geometry, and analysis, and its easy readability.

From Number Theory to Physics (Paperback, Softcover reprint of hardcover 1st ed. 1992): Michel Waldschmidt From Number Theory to Physics (Paperback, Softcover reprint of hardcover 1st ed. 1992)
Michel Waldschmidt; Contributions by P. Cartier, J.-B. Bost; Edited by Pierre Moussa; Contributions by H. Cohen; Edited by …
R4,469 Discovery Miles 44 690 Ships in 10 - 15 working days

The present book contains fourteen expository contributions on various topics connected to Number Theory, or Arithmetics, and its relationships to Theoreti cal Physics. The first part is mathematically oriented; it deals mostly with ellip tic curves, modular forms, zeta functions, Galois theory, Riemann surfaces, and p-adic analysis. The second part reports on matters with more direct physical interest, such as periodic and quasiperiodic lattices, or classical and quantum dynamical systems. The contribution of each author represents a short self-contained course on a specific subject. With very few prerequisites, the reader is offered a didactic exposition, which follows the author's original viewpoints, and often incorpo rates the most recent developments. As we shall explain below, there are strong relationships between the different chapters, even though every single contri bution can be read independently of the others. This volume originates in a meeting entitled Number Theory and Physics, which took place at the Centre de Physique, Les Houches (Haute-Savoie, France), on March 7 - 16, 1989. The aim of this interdisciplinary meeting was to gather physicists and mathematicians, and to give to members of both com munities the opportunity of exchanging ideas, and to benefit from each other's specific knowledge, in the area of Number Theory, and of its applications to the physical sciences. Physicists have been given, mostly through the program of lectures, an exposition of some of the basic methods and results of Num ber Theory which are the most actively used in their branch."

Introduction to Cryptography - Principles and Applications (Paperback, Softcover reprint of hardcover 2nd ed. 2007): Hans... Introduction to Cryptography - Principles and Applications (Paperback, Softcover reprint of hardcover 2nd ed. 2007)
Hans Delfs, Helmut Knebl
R1,793 Discovery Miles 17 930 Ships in 10 - 15 working days

Due to the rapid growth of digital communication and electronic data exchange, information security has become a crucial issue in industry, business, and administration. Modern cryptography provides essential techniques for securing information and protecting data. In the first part, this book covers the key concepts of cryptography on an undergraduate level, from encryption and digital signatures to cryptographic protocols. Essential techniques are demonstrated in protocols for key exchange, user identification, electronic elections and digital cash. In the second part, more advanced topics are addressed, such as the bit security of one-way functions and computationally perfect pseudorandom bit generators. The security of cryptographic schemes is a central topic. Typical examples of provably secure encryption and signature schemes and their security proofs are given. Though particular attention is given to the mathematical foundations, no special background in mathematics is presumed. The necessary algebra, number theory and probability theory are included in the appendix. Each chapter closes with a collection of exercises. The second edition contains corrections, revisions and new material, including a complete description of the AES, an extended section on cryptographic hash functions, a new section on random oracle proofs, and a new section on public-key encryption schemes that are provably secure against adaptively-chosen-ciphertext attacks.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Therapeutic Protein Drug Products…
Brian K. Meyer Hardcover R3,650 Discovery Miles 36 500
Hiking Beyond Cape Town - 40 Inspiring…
Nina du Plessis, Willie Olivier Paperback R340 R314 Discovery Miles 3 140
Raman and SERS Investigations of…
Monica Baia, Simion Astilean, … Hardcover R2,886 Discovery Miles 28 860
Computer Systems and Software…
Information Reso Management Association Hardcover R9,694 Discovery Miles 96 940
Closing The Gap - The Fourth Industrial…
Tshilidzi Marwala Paperback R600 Discovery Miles 6 000
Multifunctional Nanocarriers for…
Md. Abul Barkat, Harshita A.B., … Hardcover R7,127 Discovery Miles 71 270
Tools and Algorithms for the…
Bernhard Steffen, Fabrice Kordon, … Hardcover R1,552 Discovery Miles 15 520
100 Mandela Moments
Kate Sidley Paperback R260 R232 Discovery Miles 2 320
The Legend Of Zola Mahobe - And The…
Don Lepati, Nikolaos Kirkinis Paperback  (1)
R380 R356 Discovery Miles 3 560
The South African Law Of Persons
Jacqueline Heaton Paperback  (7)
R958 R898 Discovery Miles 8 980

 

Partners