![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory > General
Figurate numbers have a rich history with many applications. The main purpose of this book is to provide a thorough and complete presentation of the theory of figurate numbers, giving much of their properties, facts and theorems with full proofs. This book is the first of this topic written in unified systematic way. It also contains many exercises with solutions.
The need of optimal partition arises from many real-world problems involving the distribution of limited resources to many users. The "clustering" problem, which has recently received a lot of attention, is a special case of optimal partitioning. This book is the first attempt to collect all theoretical developments of optimal partitions, many of them derived by the authors, in an accessible place for easy reference. Much more than simply collecting the results, the book provides a general framework to unify these results and present them in an organized fashion.Many well-known practical problems of optimal partitions are dealt with. The authors show how they can be solved using the theory - or why they cannot be. These problems include: allocation of components to maximize system reliability; experiment design to identify defectives; design of circuit card library and of blood analyzer lines; abstraction of finite state machines and assignment of cache items to pages; the division of property and partition bargaining as well as touching on those well-known research areas such as scheduling, inventory, nearest neighbor assignment, the traveling salesman problem, vehicle routing, and graph partitions. The authors elucidate why the last three problems cannot be solved in the context of the theory.
This unique book provides an innovative and efficient approach to elliptic functions, based on the ideas of the great Indian mathematician Srinivasa Ramanujan. The original 1988 monograph of K Venkatachaliengar has been completely revised. Many details, omitted from the original version, have been included, and the book has been made comprehensive by notes at the end of each chapter.The book is for graduate students and researchers in Number Theory and Classical Analysis, as well for scholars and aficionados of Ramanujan's work. It can be read by anyone with some undergraduate knowledge of real and complex analysis.
Lectures on NX(p) deals with the question on how NX(p), the number of solutions of mod p congruences, varies with p when the family (X) of polynomial equations is fixed. While such a general question cannot have a complete answer, it offers a good occasion for reviewing various techniques in l-adic cohomology and group representations, presented in a context that is appealing to specialists in number theory and algebraic geometry. Along with covering open problems, the text examines the size and congruence properties of NX(p) and describes the ways in which it is computed, by closed formulae and/or using efficient computers. The first four chapters cover the preliminaries and contain almost no proofs. After an overview of the main theorems on NX(p), the book offers simple, illustrative examples and discusses the Chebotarev density theorem, which is essential in studying frobenian functions and frobenian sets. It also reviews -adic cohomology. The author goes on to present results on group representations that are often difficult to find in the literature, such as the technique of computing Haar measures in a compact -adic group by performing a similar computation in a real compact Lie group. These results are then used to discuss the possible relations between two different families of equations X and Y. The author also describes the Archimedean properties of NX(p), a topic on which much less is known than in the -adic case. Following a chapter on the Sato-Tate conjecture and its concrete aspects, the book concludes with an account of the prime number theorem and the Chebotarev density theorem in higher dimensions.
First developed in the early 1980s by Lenstra, Lenstra, and Lov sz, the LLL algorithm was originally used to provide a polynomial-time algorithm for factoring polynomials with rational coefficients. It very quickly became an essential tool in integer linear programming problems and was later adapted for use in cryptanalysis. This book provides an introduction to the theory and applications of lattice basis reduction and the LLL algorithm. With numerous examples and suggested exercises, the text discusses various applications of lattice basis reduction to cryptography, number theory, polynomial factorization, and matrix canonical forms.
This volume marks the 20th anniversary of the New York Number Theory Seminar (NYNTS). Beginning in 1982, the NYNTS has tried to present a broad spectrum of research in number theory and related fields of mathematics, from physics to geometry to combinatorics and computer science. The list of seminar speakers includes not only Fields Medallists and other established researchers, but also many other younger and less well known mathematicians whose theorems are significant and whose work may become the next big thing in number theory.
This textbook presents an elementary introduction to number theory and its different aspects: approximation of real numbers, irrationality and transcendence problems, continued fractions, diophantine equations, quadratic forms, arithmetical functions and algebraic number theory. Clear, concise, and self-contained, the topics are covered in 12 chapters with more than 200 solved exercises. The textbook may be used by undergraduates and graduate students, as well as high school mathematics teachers. More generally, it will be suitable for all those who are interested in number theory, the fascinating branch of mathematics.
This textbook presents an elementary introduction to number theory and its different aspects: approximation of real numbers, irrationality and transcendence problems, continued fractions, diophantine equations, quadratic forms, arithmetical functions and algebraic number theory. Clear, concise, and self-contained, the topics are covered in 12 chapters with more than 200 solved exercises. The textbook may be used by undergraduates and graduate students, as well as high school mathematics teachers. More generally, it will be suitable for all those who are interested in number theory, the fascinating branch of mathematics.
This valuable reference addresses the methods leading to contemporary developments in number theory and coding theory, originally presented as lectures at a summer school held at Bilkent University, Ankara, Turkey. With nearly 1500 references, equations, drawings, and tables, Number Theory and Its Applications especially benefits number theorists, coding theorists, algebraists, algebraic geometers, applied mathematicians, information theorists, and upper-level undergraduate and graduate students in these fields.
This volume aims at collecting survey papers which give broad and enlightening perspectives of various aspects of number theory.Kitaoka's paper is a continuation of his earlier paper published in the last proceedings and pushes the research forward. Browning's paper introduces a new direction of research on analytic number theory - quantitative theory of some surfaces and Bruedern et al's paper details state-of-the-art affairs of additive number theory. There are two papers on modular forms - Kohnen's paper describes generalized modular forms (GMF) which has some applications in conformal field theory, while Liu's paper is very useful for readers who want to have a quick introduction to Maass forms and some analytic-number-theoretic problems related to them. Matsumoto et al's paper gives a very thorough survey on functional relations of root system zeta-functions, Hoshi-Miyake's paper is a continuation of Miyake's long and fruitful research on generic polynomials and gives rise to related Diophantine problems, and Jia's paper surveys some dynamical aspects of a special arithmetic function connected with the distribution of prime numbers. There are two papers of collections of problems by Shparlinski on exponential and character sums and Schinzel on polynomials which will serve as an aid for finding suitable research problems. Yamamura's paper is a complete bibliography on determinant expressions for a certain class number and will be useful to researchers.Thus the book gives a good-balance of classical and modern aspects in number theory and will be useful to researchers including enthusiastic graduate students.
Linear algebra provides the essential mathematical tools to tackle all the problems in Science. Introduction to Linear Algebra is primarily aimed at students in applied fields (e.g. Computer Science and Engineering), providing them with a concrete, rigorous approach to face and solve various types of problems for the applications of their interest. This book offers a straightforward introduction to linear algebra that requires a minimal mathematical background to read and engage with. Features Presented in a brief, informative and engaging style Suitable for a wide broad range of undergraduates Contains many worked examples and exercises
This carefully edited volume contains selected refereed papers based on lectures presented by many distinguished speakers at the "Integers Conference 2005," an international conference in combinatorial number theory. The conference was held in celebration of the 70th birthday of Ronald Graham, a leader in several fields of mathematics.
Number theory is an important research field of mathematics. In mathematical competitions, problems of elementary number theory occur frequently. These problems use little knowledge and have many variations. They are flexible and diverse. In this book, the author introduces some basic concepts and methods in elementary number theory via problems in mathematical competitions. Readers are encouraged to try to solve the problems by themselves before they read the given solutions of examples. Only in this way can they truly appreciate the tricks of problem-solving.
Bruhat-Tits theory that suffices for the main applications. Part III treats modern topics that have become important in current research. Part IV provides a few sample applications of the theory. The appendices contain further details on the topic of integral models.
Exploring one of the most dynamic areas of mathematics, Advanced Number Theory with Applications covers a wide range of algebraic, analytic, combinatorial, cryptographic, and geometric aspects of number theory. Written by a recognized leader in algebra and number theory, the book includes a page reference for every citing in the bibliography and more than 1,500 entries in the index so that students can easily cross-reference and find the appropriate data. With numerous examples throughout, the text begins with coverage of algebraic number theory, binary quadratic forms, Diophantine approximation, arithmetic functions, p-adic analysis, Dirichlet characters, density, and primes in arithmetic progression. It then applies these tools to Diophantine equations, before developing elliptic curves and modular forms. The text also presents an overview of Fermat's Last Theorem (FLT) and numerous consequences of the ABC conjecture, including Thue-Siegel-Roth theorem, Hall's conjecture, the Erdos-Mollin--Walsh conjecture, and the Granville-Langevin Conjecture. In the appendix, the author reviews sieve methods, such as Eratothesenes', Selberg's, Linnik's, and Bombieri's sieves. He also discusses recent results on gaps between primes and the use of sieves in factoring. By focusing on salient techniques in number theory, this textbook provides the most up-to-date and comprehensive material for a second course in this field. It prepares students for future study at the graduate level."
This book is written for undergraduates who wish to learn some basic results in analytic number theory. It covers topics such as Bertrand's Postulate, the Prime Number Theorem and Dirichlet's Theorem of primes in arithmetic progression. The materials in this book are based on A Hidebrand's 1991 lectures delivered at the University of Illinois at Urbana-Champaign and the author's course conducted at the National University of Singapore from 2001 to 2008.
This is a first-ever textbook written in English about the theory of modular forms and Jacobi forms of several variables. It contains the classical theory as well as a new theory on Jacobi forms over Cayley numbers developed by the author from 1990 to 2000. Applications to the classical Euler sums are of special interest to those who are eager to evaluate double Euler sums or more general multiple zeta values. The celebrated sum formula proved by Granville in 1997 is generalized to a more general form here.
This book presents a graduate student-level introduction to the classical theory of modular forms and computations involving modular forms, including modular functions and the theory of Hecke operators. It also includes applications of modular forms to such diverse subjects as the theory of quadratic forms, the proof of Fermat's last theorem and the approximation of pi. It provides a balanced overview of both the theoretical and computational sides of the subject, allowing a variety of courses to be taught from it.
This expanded textbook, now in its second edition, is a practical yet in depth guide to cryptography and its principles and practices. Now featuring a new section on quantum resistant cryptography in addition to expanded and revised content throughout, the book continues to place cryptography in real-world security situations using the hands-on information contained throughout the chapters. Prolific author Dr. Chuck Easttom lays out essential math skills and fully explains how to implement cryptographic algorithms in today's data protection landscape. Readers learn and test out how to use ciphers and hashes, generate random keys, handle VPN and Wi-Fi security, and encrypt VoIP, Email, and Web communications. The book also covers cryptanalysis, steganography, and cryptographic backdoors and includes a description of quantum computing and its impact on cryptography. This book is meant for those without a strong mathematics background with only just enough math to understand the algorithms given. The book contains a slide presentation, questions and answers, and exercises throughout. Presents new and updated coverage of cryptography including new content on quantum resistant cryptography; Covers the basic math needed for cryptography - number theory, discrete math, and algebra (abstract and linear); Includes a full suite of classroom materials including exercises, Q&A, and examples.
This book presents the Riemann Hypothesis, connected problems, and a taste of the body of theory developed towards its solution. It is targeted at the educated non-expert. Almost all the material is accessible to any senior mathematics student, and much is accessible to anyone with some university mathematics. The appendices include a selection of original papers. This collection is not very large and encompasses only the most important milestones in the evolution of theory connected to the Riemann Hypothesis. The appendices also include some authoritative expository papers. These are the "expert witnesses whose insight into this field is both invaluable and irreplaceable.
This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles' resolution of Fermat's Last Theorem.
Noncommutative Geometry and Cayley-smooth Orders explains the theory of Cayley-smooth orders in central simple algebras over function fields of varieties. In particular, the book describes the etale local structure of such orders as well as their central singularities and finite dimensional representations. After an introduction to partial desingularizations of commutative singularities from noncommutative algebras, the book presents the invariant theoretic description of orders and their centers. It proceeds to introduce etale topology and its use in noncommutative algebra as well as to collect the necessary material on representations of quivers. The subsequent chapters explain the etale local structure of a Cayley-smooth order in a semisimple representation, classify the associated central singularity to smooth equivalence, describe the nullcone of these marked quiver representations, and relate them to the study of all isomorphism classes of n-dimensional representations of a Cayley-smooth order. The final chapters study Quillen-smooth algebras via their finite dimensional representations. Noncommutative Geometry and Cayley-smooth Orders provides a gentle introduction to one of mathematics' and physics' hottest topics.
From the reviews: "The 2nd (slightly enlarged) edition of the van Lint's book is a short, concise, mathematically rigorous introduction to the subject. Basic notions and ideas are clearly presented from the mathematician's point of view and illustrated on various special classes of codes...This nice book is a must for every mathematician wishing to introduce himself to the algebraic theory of coding." European Mathematical Society Newsletter, 1993 "Despite the existence of so many other books on coding theory, this present volume will continue to hold its place as one of the standard texts...." The Mathematical Gazette, 1993
Automatic sequences are sequences which are produced by a finite automaton. Although they are not random they may look as being random. They are complicated, in the sense of not being not ultimately periodic, they may look rather complicated, in the sense that it may not be easy to name the rule by which the sequence is generated, however there exists a rule which generates the sequence. The concept automatic sequences has special applications in algebra, number theory, finite automata and formal languages, combinatorics on words. The text deals with different aspects of automatic sequences, in particular:A· a general introduction to automatic sequencesA· the basic (combinatorial) properties of automatic sequencesA· the algebraic approach to automatic sequencesA· geometric objects related to automatic sequences. |
You may like...
|