0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (55)
  • R250 - R500 (67)
  • R500+ (1,734)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Mathematics > Number theory > General

Advances in Noncommutative Geometry - On the Occasion of Alain Connes' 70th Birthday (Hardcover, 1st ed. 2019): Ali... Advances in Noncommutative Geometry - On the Occasion of Alain Connes' 70th Birthday (Hardcover, 1st ed. 2019)
Ali Chamseddine, Caterina Consani, Nigel Higson, Masoud Khalkhali, Henri Moscovici, …
R3,723 Discovery Miles 37 230 Ships in 10 - 15 working days

This authoritative volume in honor of Alain Connes, the foremost architect of Noncommutative Geometry, presents the state-of-the art in the subject. The book features an amalgam of invited survey and research papers that will no doubt be accessed, read, and referred to, for several decades to come. The pertinence and potency of new concepts and methods are concretely illustrated in each contribution. Much of the content is a direct outgrowth of the Noncommutative Geometry conference, held March 23-April 7, 2017, in Shanghai, China. The conference covered the latest research and future areas of potential exploration surrounding topology and physics, number theory, as well as index theory and its ramifications in geometry.

Harmonic Analysis and Applications (Hardcover, 1st ed. 2021): Michael Th Rassias Harmonic Analysis and Applications (Hardcover, 1st ed. 2021)
Michael Th Rassias
R3,680 Discovery Miles 36 800 Ships in 10 - 15 working days

This edited volume presents state-of-the-art developments in various areas in which Harmonic Analysis is applied. Contributions cover a variety of different topics and problems treated such as structure and optimization in computational harmonic analysis, sampling and approximation in shift invariant subspaces of L2( ), optimal rank one matrix decomposition, the Riemann Hypothesis, large sets avoiding rough patterns, Hardy Littlewood series, Navier-Stokes equations, sleep dynamics exploration and automatic annotation by combining modern harmonic analysis tools, harmonic functions in slabs and half-spaces, Andoni -Krauthgamer -Razenshteyn characterization of sketchable norms fails for sketchable metrics, random matrix theory, multiplicative completion of redundant systems in Hilbert and Banach function spaces. Efforts have been made to ensure that the content of the book constitutes a valuable resource for graduate students as well as senior researchers working on Harmonic Analysis and its various interconnections with related areas.

Cubic Forms and the Circle Method (Hardcover, 1st ed. 2021): Tim Browning Cubic Forms and the Circle Method (Hardcover, 1st ed. 2021)
Tim Browning
R3,103 Discovery Miles 31 030 Ships in 18 - 22 working days

The Hardy-Littlewood circle method was invented over a century ago to study integer solutions to special Diophantine equations, but it has since proven to be one of the most successful all-purpose tools available to number theorists. Not only is it capable of handling remarkably general systems of polynomial equations defined over arbitrary global fields, but it can also shed light on the space of rational curves that lie on algebraic varieties. This book, in which the arithmetic of cubic polynomials takes centre stage, is aimed at bringing beginning graduate students into contact with some of the many facets of the circle method, both classical and modern. This monograph is the winner of the 2021 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.

The Power of q - A Personal Journey (Hardcover, 1st ed. 2017): Michael D Hirschhorn The Power of q - A Personal Journey (Hardcover, 1st ed. 2017)
Michael D Hirschhorn
R3,185 Discovery Miles 31 850 Ships in 9 - 17 working days

This unique book explores the world of q, known technically as basic hypergeometric series, and represents the author's personal and life-long study-inspired by Ramanujan-of aspects of this broad topic. While the level of mathematical sophistication is graduated, the book is designed to appeal to advanced undergraduates as well as researchers in the field. The principal aims are to demonstrate the power of the methods and the beauty of the results. The book contains novel proofs of many results in the theory of partitions and the theory of representations, as well as associated identities. Though not specifically designed as a textbook, parts of it may be presented in course work; it has many suitable exercises. After an introductory chapter, the power of q-series is demonstrated with proofs of Lagrange's four-squares theorem and Gauss's two-squares theorem. Attention then turns to partitions and Ramanujan's partition congruences. Several proofs of these are given throughout the book. Many chapters are devoted to related and other associated topics. One highlight is a simple proof of an identity of Jacobi with application to string theory. On the way, we come across the Rogers-Ramanujan identities and the Rogers-Ramanujan continued fraction, the famous "forty identities" of Ramanujan, and the representation results of Jacobi, Dirichlet and Lorenz, not to mention many other interesting and beautiful results. We also meet a challenge of D.H. Lehmer to give a formula for the number of partitions of a number into four squares, prove a "mysterious" partition theorem of H. Farkas and prove a conjecture of R.Wm. Gosper "which even Erdos couldn't do." The book concludes with a look at Ramanujan's remarkable tau function.

Surveys in Number Theory (Hardcover, 2008 ed.): Krishnaswami Alladi Surveys in Number Theory (Hardcover, 2008 ed.)
Krishnaswami Alladi
R1,411 Discovery Miles 14 110 Ships in 18 - 22 working days

Number theory has a wealth of long-standing problems, the study of which over the years has led to major developments in many areas of mathematics. This volume consists of seven significant chapters on number theory and related topics. Written by distinguished mathematicians, key topics focus on multipartitions, congruences and identities (G. Andrews), the formulas of Koshliakov and Guinand in Ramanujan's Lost Notebook (B.C. Berndt, Y. Lee, and J. Sohn), alternating sign matrices and the Weyl character formulas (D.M. Bressoud), theta functions in complex analysis (H.M. Farkas), representation functions in additive number theory (M.B. Nathanson), and mock theta functions, ranks, and Maass forms (K. Ono), and elliptic functions (M. Waldschmidt).

All of the surveys were outgrowths of featured talks given during the Special Year in Number Theory and Combinatorics at the University of Florida, Gainesville, 2004-2005, and describe major progress on a broad range of topics.

This volume is intended for mathematicians and graduate students interested in number theory and related areas.

Vedic Mathematics: A Mathematical Tale From The Ancient Veda To Modern Times (Hardcover): Giuseppe Dattoli, Silvia Licciardi,... Vedic Mathematics: A Mathematical Tale From The Ancient Veda To Modern Times (Hardcover)
Giuseppe Dattoli, Silvia Licciardi, Marcello Artioli
R1,707 Discovery Miles 17 070 Ships in 18 - 22 working days

This is a book about Mathematics but not a book of Mathematics. It is an attempt, between the serious and facetious, of conveying the idea that a mathematical thought is the result of different experiences, geographical and social factors. Even though it is not clear when Mathematics had started, it is evident that it had been used at an early stage of human history and by ancient Babylonians and Egyptians who have already developed a sophisticated corpus of mathematical items, which were the workhorse tools in engineering, navigation, trades and astronomy. The book sweeps across the mathematical minds of the Greek and Arab traditions, concepts by Assyro-Babylonians, and ancient Indian Vedic culture. The mathematical mind has modeled the evolution of societies and has been modeled by it. It is now in the midst of a great revolution and it is not clear where it will bring us. The current new epoch needs new mathematical tools and, above this, a new way of looking at Mathematics. This book tells the tale of what went on and what might go on.

Cubic Fields with Geometry (Hardcover, 1st ed. 2018): Samuel A. Hambleton, Hugh C. Williams Cubic Fields with Geometry (Hardcover, 1st ed. 2018)
Samuel A. Hambleton, Hugh C. Williams
R3,696 Discovery Miles 36 960 Ships in 10 - 15 working days

The objective of this book is to provide tools for solving problems which involve cubic number fields. Many such problems can be considered geometrically; both in terms of the geometry of numbers and geometry of the associated cubic Diophantine equations that are similar in many ways to the Pell equation. With over 50 geometric diagrams, this book includes illustrations of many of these topics. The book may be thought of as a companion reference for those students of algebraic number theory who wish to find more examples, a collection of recent research results on cubic fields, an easy-to-understand source for learning about Voronoi's unit algorithm and several classical results which are still relevant to the field, and a book which helps bridge a gap in understanding connections between algebraic geometry and number theory. The exposition includes numerous discussions on calculating with cubic fields including simple continued fractions of cubic irrational numbers, arithmetic using integer matrices, ideal class group computations, lattices over cubic fields, construction of cubic fields with a given discriminant, the search for elements of norm 1 of a cubic field with rational parametrization, and Voronoi's algorithm for finding a system of fundamental units. Throughout, the discussions are framed in terms of a binary cubic form that may be used to describe a given cubic field. This unifies the chapters of this book despite the diversity of their number theoretic topics.

A First Course in Group Theory (Hardcover, 1st ed. 2021): Bijan Davvaz A First Course in Group Theory (Hardcover, 1st ed. 2021)
Bijan Davvaz
R1,439 Discovery Miles 14 390 Ships in 18 - 22 working days

This textbook provides a readable account of the examples and fundamental results of groups from a theoretical and geometrical point of view. Topics on important examples of groups (like cyclic groups, permutation groups, group of arithmetical functions, matrix groups and linear groups), Lagrange's theorem, normal subgroups, factor groups, derived subgroup, homomorphism, isomorphism and automorphism of groups have been discussed in depth. Covering all major topics, this book is targeted to undergraduate students of mathematics with no prerequisite knowledge of the discussed topics. Each section ends with a set of worked-out problems and supplementary exercises to challenge the knowledge and ability of the reader.

Topics in Computational Algebra (Hardcover, Reprinted from 'ACTA APPLICANDAE MATHEMATICAE', 21: 1-2, 1991):... Topics in Computational Algebra (Hardcover, Reprinted from 'ACTA APPLICANDAE MATHEMATICAE', 21: 1-2, 1991)
G.M.Piacentini Cattaneo, Elisabetta Strickland
R4,154 Discovery Miles 41 540 Ships in 18 - 22 working days

The main purpose of these lectures is first to briefly survey the fundamental con nection between the representation theory of the symmetric group Sn and the theory of symmetric functions and second to show how combinatorial methods that arise naturally in the theory of symmetric functions lead to efficient algorithms to express various prod ucts of representations of Sn in terms of sums of irreducible representations. That is, there is a basic isometry which maps the center of the group algebra of Sn, Z(Sn), to the space of homogeneous symmetric functions of degree n, An. This basic isometry is known as the Frobenius map, F. The Frobenius map allows us to reduce calculations involving characters of the symmetric group to calculations involving Schur functions. Now there is a very rich and beautiful theory of the combinatorics of symmetric functions that has been developed in recent years. The combinatorics of symmetric functions, then leads to a number of very efficient algorithms for expanding various products of Schur functions into a sum of Schur functions. Such expansions of products of Schur functions correspond via the Frobenius map to decomposing various products of irreducible representations of Sn into their irreducible components. In addition, the Schur functions are also the characters of the irreducible polynomial representations of the general linear group over the complex numbers GLn(C)."

Rational Points on Algebraic Varieties - Zweite, aktualisierte und erweiterte Auflage (Hardcover, 2001 ed.): Emmanuel Peyre,... Rational Points on Algebraic Varieties - Zweite, aktualisierte und erweiterte Auflage (Hardcover, 2001 ed.)
Emmanuel Peyre, Yuri Tschinkel
R4,261 Discovery Miles 42 610 Ships in 18 - 22 working days

This book is devoted to the study of rational and integral points on higher- dimensional algebraic varieties. It contains research papers addressing the arithmetic geometry of varieties which are not of general type, with an em- phasis on how rational points are distributed with respect to the classical, Zariski and adelic topologies. The book gives a glimpse of the state of the art of this rapidly expanding domain in arithmetic geometry. The techniques involve explicit geometric con- structions, ideas from the minimal model program in algebraic geometry as well as analytic number theory and harmonic analysis on adelic groups. In recent years there has been substantial progress in our understanding of the arithmetic of algebraic surfaces. Five papers are devoted to cubic surfaces: Basile and Fisher study the existence of rational points on certain diagonal cubics, Swinnerton-Dyer considers weak approximation and Broberg proves upper bounds on the number of rational points on the complement to lines on cubic surfaces. Peyre and Tschinkel compare numerical data with conjectures concerning asymptotics of rational points of bounded height on diagonal cubics of rank ~ 2. Kanevsky and Manin investigate the composition of points on cubic surfaces. Satge constructs rational curves on certain Kummer surfaces. Colliot-Thelene studies the Hasse principle for pencils of curves of genus 1. In an appendix to this paper Skorobogatov produces explicit examples of Enriques surfaces with a Zariski dense set of rational points.

p-Adic Automorphic Forms on Shimura Varieties (Hardcover, 2004 ed.): Haruzo Hida p-Adic Automorphic Forms on Shimura Varieties (Hardcover, 2004 ed.)
Haruzo Hida
R5,207 Discovery Miles 52 070 Ships in 18 - 22 working days

This book covers the following three topics in a manner accessible to graduate students who have an understanding of algebraic number theory and scheme theoretic algebraic geometry:

1. An elementary construction of Shimura varieties as moduli of abelian schemes

2. p-adic deformation theory of automorphic forms on Shimura varieties

3. A simple proof of irreducibility of the generalized Igusa tower over the Shimura variety

The book starts with a detailed study of elliptic and Hilbert modular forms and reaches to the forefront of research of Shimura varieties associated with general classical groups. The method of constructing p-adic analytic families and the proof of irreducibility was recently discovered by the author. The area covered in this book is now a focal point of research worldwide with many far-reaching applications that have led to solutions of longstanding problems and conjectures. Specifically, the use of p-adic elliptic and Hilbert modular forms have proven essential in recent breakthroughs in number theory (for example, the proof of Fermat's Last Theorem and the Shimura-Taniyama conjecture by A. Wiles and others).

Haruzo Hida is Professor of Mathematics at University of California, Los Angeles. His previous books include Modular Forms and Galois Cohomology (Cambridge University Press 2000) and Geometric Modular Forms and Elliptic Curves (World Scientific Publishing Company 2000).

The Theory of Finslerian Laplacians and Applications (Hardcover, 1998 ed.): P.L. Antonelli, Bradley C. Lackey The Theory of Finslerian Laplacians and Applications (Hardcover, 1998 ed.)
P.L. Antonelli, Bradley C. Lackey
R1,575 Discovery Miles 15 750 Ships in 18 - 22 working days

Finslerian Laplacians have arisen from the demands of modelling the modern world. However, the roots of the Laplacian concept can be traced back to the sixteenth century. Its phylogeny and history are presented in the Prologue of this volume. The text proper begins with a brief introduction to stochastically derived Finslerian Laplacians, facilitated by applications in ecology, epidemiology and evolutionary biology. The mathematical ideas are then fully presented in section II, with generalizations to Lagrange geometry following in section III. With section IV, the focus abruptly shifts to the local mean-value approach to Finslerian Laplacians and a Hodge-de Rham theory is developed for the representation on real cohomology classes by harmonic forms on the base manifold. Similar results are proved in sections II and IV, each from different perspectives. Modern topics treated include nonlinear Laplacians, Bochner and Lichnerowicz vanishing theorems, WeitzenbAck formulas, and Finslerian spinors and Dirac operators. The tools developed in this book will find uses in several areas of physics and engineering, but especially in the mechanics of inhomogeneous media, e.g. Cofferat continua. Audience: This text will be of use to workers in stochastic processes, differential geometry, nonlinear analysis, epidemiology, ecology and evolution, as well as physics of the solid state and continua.

Integer Sequences - Divisibility, Lucas and Lehmer Sequences (Hardcover, 1st ed. 2021): Masum Billal, Samin Riasat Integer Sequences - Divisibility, Lucas and Lehmer Sequences (Hardcover, 1st ed. 2021)
Masum Billal, Samin Riasat
R3,106 Discovery Miles 31 060 Ships in 18 - 22 working days

This book discusses special properties of integer sequences from a unique point of view. It generalizes common, well-known properties and connects them with sequences such as divisible sequences, Lucas sequences, Lehmer sequences, periods of sequences, lifting properties, and so on. The book presents theories derived by using elementary means and includes results not usually found in common number theory books. Considering the impact and usefulness of these theorems, the book also aims at being valuable for Olympiad level problem solving as well as regular research. This book will be of interest to students, researchers and faculty members alike.

Recent Developments in Fractals and Related Fields - Conference on Fractals and Related Fields III, ile de Porquerolles,... Recent Developments in Fractals and Related Fields - Conference on Fractals and Related Fields III, ile de Porquerolles, France, 2015 (Hardcover, 1st ed. 2017)
Julien Barral, Stephane Seuret
R4,718 Discovery Miles 47 180 Ships in 10 - 15 working days

This contributed volume provides readers with an overview of the most recent developments in the mathematical fields related to fractals, including both original research contributions, as well as surveys from many of the leading experts on modern fractal theory and applications. It is an outgrowth of the Conference of Fractals and Related Fields III, that was held on September 19-25, 2015 in ile de Porquerolles, France. Chapters cover fields related to fractals such as harmonic analysis, multifractal analysis, geometric measure theory, ergodic theory and dynamical systems, probability theory, number theory, wavelets, potential theory, partial differential equations, fractal tilings, combinatorics, and signal and image processing. The book is aimed at pure and applied mathematicians in these areas, as well as other researchers interested in discovering the fractal domain.

Algebraic Modeling of Topological and Computational Structures and Applications - THALES, Athens, Greece, July 1-3, 2015... Algebraic Modeling of Topological and Computational Structures and Applications - THALES, Athens, Greece, July 1-3, 2015 (Hardcover, 1st ed. 2017)
Sofia Lambropoulou, Doros Theodorou, Petros Stefaneas, Louis H. Kauffman
R4,134 Discovery Miles 41 340 Ships in 18 - 22 working days

This interdisciplinary book covers a wide range of subjects, from pure mathematics (knots, braids, homotopy theory, number theory) to more applied mathematics (cryptography, algebraic specification of algorithms, dynamical systems) and concrete applications (modeling of polymers and ionic liquids, video, music and medical imaging). The main mathematical focus throughout the book is on algebraic modeling with particular emphasis on braid groups. The research methods include algebraic modeling using topological structures, such as knots, 3-manifolds, classical homotopy groups, and braid groups. The applications address the simulation of polymer chains and ionic liquids, as well as the modeling of natural phenomena via topological surgery. The treatment of computational structures, including finite fields and cryptography, focuses on the development of novel techniques. These techniques can be applied to the design of algebraic specifications for systems modeling and verification. This book is the outcome of a workshop in connection with the research project Thales on Algebraic Modeling of Topological and Computational Structures and Applications, held at the National Technical University of Athens, Greece in July 2015. The reader will benefit from the innovative approaches to tackling difficult questions in topology, applications and interrelated research areas, which largely employ algebraic tools.

The Eigenbook - Eigenvarieties, families of Galois representations, p-adic L-functions (Hardcover, 1st ed. 2021): Joel Bellaiche The Eigenbook - Eigenvarieties, families of Galois representations, p-adic L-functions (Hardcover, 1st ed. 2021)
Joel Bellaiche
R1,784 Discovery Miles 17 840 Ships in 18 - 22 working days

This book discusses the p-adic modular forms, the eigencurve that parameterize them, and the p-adic L-functions one can associate to them. These theories and their generalizations to automorphic forms for group of higher ranks are of fundamental importance in number theory. For graduate students and newcomers to this field, the book provides a solid introduction to this highly active area of research. For experts, it will offer the convenience of collecting into one place foundational definitions and theorems with complete and self-contained proofs. Written in an engaging and educational style, the book also includes exercises and provides their solution.

Degeneration of Abelian Varieties (Hardcover, 1990 ed.): Gerd Faltings, Ching-Li Chai Degeneration of Abelian Varieties (Hardcover, 1990 ed.)
Gerd Faltings, Ching-Li Chai
R3,732 Discovery Miles 37 320 Ships in 10 - 15 working days

A new and complete treatment of semi-abelian degenerations of abelian varieties, and their application to the construction of arithmetic compactifications of Siegel moduli space, with most of the results being published for the first time. Highlights of the book include a classification of semi-abelian schemes, construction of the toroidal and the minimal compactification over the integers, heights for abelian varieties over number fields, and Eichler integrals in several variables, together with a new approach to Siegel modular forms. A valuable source of reference for researchers and graduate students interested in algebraic geometry, Shimura varieties or diophantine geometry.

Harmonic Analysis on Reductive Groups (Hardcover, 1991 ed.): W Barker, P. Sally Harmonic Analysis on Reductive Groups (Hardcover, 1991 ed.)
W Barker, P. Sally
R2,871 Discovery Miles 28 710 Ships in 18 - 22 working days

A conference on Harmonic Analysis on Reductive Groups was held at Bowdoin College in Brunswick, Maine from July 31 to August 11, 1989. The stated goal of the conference was to explore recent advances in harmonic analysis on both real and p-adic groups. It was the first conference since the AMS Summer Sym posium on Harmonic Analysis on Homogeneous Spaces, held at Williamstown, Massachusetts in 1972, to cover local harmonic analysis on reductive groups in such detail and to such an extent. While the Williamstown conference was longer (three weeks) and somewhat broader (nilpotent groups, solvable groups, as well as semisimple and reductive groups), the structure and timeliness of the two meetings was remarkably similar. The program of the Bowdoin Conference consisted of two parts. First, there were six major lecture series, each consisting of several talks addressing those topics in harmonic analysis on real and p-adic groups which were the focus of intensive research during the previous decade. These lectures began at an introductory level and advanced to the current state of research. Sec ond, there was a series of single lectures in which the speakers presented an overview of their latest research."

Automorphisms of Finite Groups (Hardcover, 1st ed. 2018): Inder Bir Singh Passi, Mahender Singh, Manoj Kumar Yadav Automorphisms of Finite Groups (Hardcover, 1st ed. 2018)
Inder Bir Singh Passi, Mahender Singh, Manoj Kumar Yadav
R2,336 R1,538 Discovery Miles 15 380 Save R798 (34%) Ships in 10 - 15 working days

The book describes developments on some well-known problems regarding the relationship between orders of finite groups and that of their automorphism groups. It is broadly divided into three parts: the first part offers an exposition of the fundamental exact sequence of Wells that relates automorphisms, derivations and cohomology of groups, along with some interesting applications of the sequence. The second part offers an account of important developments on a conjecture that a finite group has at least a prescribed number of automorphisms if the order of the group is sufficiently large. A non-abelian group of prime-power order is said to have divisibility property if its order divides that of its automorphism group. The final part of the book discusses the literature on divisibility property of groups culminating in the existence of groups without this property. Unifying various ideas developed over the years, this largely self-contained book includes results that are either proved or with complete references provided. It is aimed at researchers working in group theory, in particular, graduate students in algebra.

Adjoint Equations and Analysis of Complex Systems (Hardcover, 1995 ed.): Guri I. Marchuk Adjoint Equations and Analysis of Complex Systems (Hardcover, 1995 ed.)
Guri I. Marchuk
R2,911 Discovery Miles 29 110 Ships in 18 - 22 working days

New statements of problems arose recently demanding thorough ana lysis. Notice, first of all, the statements of problems using adjoint equations which gradually became part of our life. Adjoint equations are capable to bring fresh ideas to various problems of new technology based on linear and nonlinear processes. They became part of golden fund of science through quantum mechanics, theory of nuclear reactors, optimal control, and finally helped in solving many problems on the basis of perturbation method and sensitivity theory. To emphasize the important role of adjoint problems in science one should mention four-dimensional analysis problem and solution of inverse problems. This range of problems includes first of all problems of global climate changes on our planet, state of environment and protection of environ ment against pollution, preservation of the biosphere in conditions of vigorous growth of population, intensive development of industry, and many others. All this required complex study of large systems: interac tion between the atmosphere and oceans and continents in the theory of climate, cenoses in the biosphere affected by pollution of natural and anthropogenic origin. Problems of local and global perturbations and models sensitivity to input data join into common complex system."

Combinatorics and Finite Fields - Difference Sets, Polynomials, Pseudorandomness and Applications (Hardcover): Kai Uwe Schmidt,... Combinatorics and Finite Fields - Difference Sets, Polynomials, Pseudorandomness and Applications (Hardcover)
Kai Uwe Schmidt, Arne Winterhof
R4,377 Discovery Miles 43 770 Ships in 10 - 15 working days

Combinatorics and finite fields are of great importance in modern applications such as in the analysis of algorithms, in information and communication theory, and in signal processing and coding theory. This book contains survey articles on topics such as difference sets, polynomials, and pseudorandomness.

Automorphic Forms and Even Unimodular Lattices - Kneser Neighbors of Niemeier Lattices (Hardcover, 1st ed. 2019): Reinie Erne Automorphic Forms and Even Unimodular Lattices - Kneser Neighbors of Niemeier Lattices (Hardcover, 1st ed. 2019)
Reinie Erne; Gaetan Chenevier, Jean Lannes
R2,762 R1,978 Discovery Miles 19 780 Save R784 (28%) Ships in 10 - 15 working days

This book includes a self-contained approach of the general theory of quadratic forms and integral Euclidean lattices, as well as a presentation of the theory of automorphic forms and Langlands' conjectures, ranging from the first definitions to the recent and deep classification results due to James Arthur. Its connecting thread is a question about lattices of rank 24: the problem of p-neighborhoods between Niemeier lattices. This question, whose expression is quite elementary, is in fact very natural from the automorphic point of view, and turns out to be surprisingly intriguing. We explain how the new advances in the Langlands program mentioned above pave the way for a solution. This study proves to be very rich, leading us to classical themes such as theta series, Siegel modular forms, the triality principle, L-functions and congruences between Galois representations. This monograph is intended for any mathematician with an interest in Euclidean lattices, automorphic forms or number theory. A large part of it is meant to be accessible to non-specialists.

Numerical Integration of Stochastic Differential Equations (Hardcover, 1995 ed.): G.N. Milstein Numerical Integration of Stochastic Differential Equations (Hardcover, 1995 ed.)
G.N. Milstein
R3,878 Discovery Miles 38 780 Ships in 18 - 22 working days

This book is devoted to mean-square and weak approximations of solutions of stochastic differential equations (SDE). These approximations represent two fundamental aspects in the contemporary theory of SDE. Firstly, the construction of numerical methods for such systems is important as the solutions provided serve as characteristics for a number of mathematical physics problems. Secondly, the employment of probability representations together with a Monte Carlo method allows us to reduce the solution of complex multidimensional problems of mathematical physics to the integration of stochastic equations. Along with a general theory of numerical integrations of such systems, both in the mean-square and the weak sense, a number of concrete and sufficiently constructive numerical schemes are considered. Various applications and particularly the approximate calculation of Wiener integrals are also dealt with. This book is of interest to graduate students in the mathematical, physical and engineering sciences, and to specialists whose work involves differential equations, mathematical physics, numerical mathematics, the theory of random processes, estimation and control theory.

Women in Numbers Europe II - Contributions to Number Theory and Arithmetic Geometry (Hardcover, 1st ed. 2018): Irene I. Bouw,... Women in Numbers Europe II - Contributions to Number Theory and Arithmetic Geometry (Hardcover, 1st ed. 2018)
Irene I. Bouw, Ekin Ozman, Jennifer Johnson-Leung, Rachel Newton
R4,022 Discovery Miles 40 220 Ships in 18 - 22 working days

Inspired by the September 2016 conference of the same name, this second volume highlights recent research in a wide range of topics in contemporary number theory and arithmetic geometry. Research reports from projects started at the conference, expository papers describing ongoing research, and contributed papers from women number theorists outside the conference make up this diverse volume. Topics cover a broad range of topics such as arithmetic dynamics, failure of local-global principles, geometry in positive characteristics, and heights of algebraic integers. The use of tools from algebra, analysis and geometry, as well as computational methods exemplifies the wealth of techniques available to modern researchers in number theory. Exploring connections between different branches of mathematics and combining different points of view, these papers continue the tradition of supporting and highlighting the contributions of women number theorists at a variety of career stages. Perfect for students and researchers interested in the field, this volume provides an easily accessible introduction and has the potential to inspire future work.

Modular Units (Hardcover, 1981 ed.): D. Kubert, S. Lang Modular Units (Hardcover, 1981 ed.)
D. Kubert, S. Lang
R5,346 Discovery Miles 53 460 Ships in 18 - 22 working days

In the present book, we have put together the basic theory of the units and cuspidal divisor class group in the modular function fields, developed over the past few years. Let i) be the upper half plane, and N a positive integer. Let r(N) be the subgroup of SL (Z) consisting of those matrices == 1 mod N. Then r(N)\i) 2 is complex analytic isomorphic to an affine curve YeN), whose compactifi cation is called the modular curve X(N). The affine ring of regular functions on yeN) over C is the integral closure of C j] in the function field of X(N) over C. Here j is the classical modular function. However, for arithmetic applications, one considers the curve as defined over the cyclotomic field Q(JlN) of N-th roots of unity, and one takes the integral closure either of Q j] or Z j], depending on how much arithmetic one wants to throw in. The units in these rings consist of those modular functions which have no zeros or poles in the upper half plane. The points of X(N) which lie at infinity, that is which do not correspond to points on the above affine set, are called the cusps, because of the way they look in a fundamental domain in the upper half plane. They generate a subgroup of the divisor class group, which turns out to be finite, and is called the cuspidal divisor class group."

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Linear Dynamical Systems on Hilbert…
S. Grivaux, E. Matheron, … Paperback R2,457 R2,094 Discovery Miles 20 940
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek Hardcover R3,328 Discovery Miles 33 280
Pointwise Variable Anisotropic Function…
Shai Dekel Hardcover R4,120 Discovery Miles 41 200
Ergodic Theory - Advances in Dynamical…
Idris Assani Hardcover R3,964 Discovery Miles 39 640
An Investigation Into the Effects of…
Baby Professor Hardcover R689 R613 Discovery Miles 6 130
The Lean Approach to Digital…
Yves Caseau Hardcover R3,372 Discovery Miles 33 720
How Do You Measure Energy? Energy Book…
Baby Professor Hardcover R689 R613 Discovery Miles 6 130
The Blockchain Technology for Secure and…
Neeraj Kumar, Shubhani Aggarwal, … Hardcover R3,960 Discovery Miles 39 600
Where Does Heat Come From? Heat Source…
Baby Professor Hardcover R689 R613 Discovery Miles 6 130
Waves in Action - Characteristics of…
Baby Professor Hardcover R689 R613 Discovery Miles 6 130

 

Partners