![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory > General
The aim of this book is to illustrate by significant special examples three aspects of the theory of Diophantine approximations: the formal relationships that exist between counting processes and the functions entering the theory; the determination of these functions for numbers given as classical numbers; and certain asymptotic estimates holding almost everywhere.Each chapter works out a special case of a much broader general theory, as yet unknown. Indications for this are given throughout the book, together with reference to current publications. The book may be used in a course in number theory, whose students will thus be put in contact with interesting but accessible problems on the ground floor of mathematics.
From September 13 to 17 in 1999, the First China-Japan Seminar on Number Theory was held in Beijing, China, which was organized by the Institute of Mathematics, Academia Sinica jointly with Department of Mathematics, Peking University. TE: m Japanese Professors and eighteen Chinese Professors attended this seminar. Professor Yuan Wang was the chairman, and Professor Chengbiao Pan was the vice-chairman. This seminar was planned and prepared by Professor Shigeru Kanemitsu and the first-named editor. Talks covered various research fields including analytic number theory, algebraic number theory, modular forms and transcendental number theory. The Great Wall and acrobatics impressed Japanese visitors. From November 29 to December 3 in 1999, an annual conference on analytic number theory was held in Kyoto, Japan, as one of the conferences supported by Research Institute of Mathematical Sciences (RIMS), Kyoto University. The organizer was the second-named editor. About one hundred Japanese scholars and some foreign visitors com ing from China, France, Germany and India attended this conference. Talks covered many branches in number theory. The scenery in Kyoto, Arashiyama Mountain and Katsura River impressed foreign visitors. An informal report of this conference was published as the volume 1160 of Surikaiseki Kenkyusho Kokyuroku (June 2000), published by RIMS, Ky oto University. The present book is the Proceedings of these two conferences, which records mainly some recent progress in number theory in China and Japan and reflects the academic exchanging between China and Japan."
This book has grown out of a set of lecture notes I had prepared for a course on Lie groups in 1966. When I lectured again on the subject in 1972, I revised the notes substantially. It is the revised version that is now appearing in book form. The theory of Lie groups plays a fundamental role in many areas of mathematics. There are a number of books on the subject currently available -most notably those of Chevalley, Jacobson, and Bourbaki-which present various aspects of the theory in great depth. However, 1 feei there is a need for a single book in English which develops both the algebraic and analytic aspects of the theory and which goes into the representation theory of semi simple Lie groups and Lie algebras in detail. This book is an attempt to fiii this need. It is my hope that this book will introduce the aspiring graduate student as well as the nonspecialist mathematician to the fundamental themes of the subject. I have made no attempt to discuss infinite-dimensional representations. This is a very active field, and a proper treatment of it would require another volume (if not more) of this size. However, the reader who wants to take up this theory will find that this book prepares him reasonably well for that task."
This book surveys the current state of the "small" sieve methods developed by Brun, Selberg and later workers.. A self-contained treatment is given to topics that are of central importance in the subject. These include the upper bound method of Selberg, Brun's method, Rosser's sieve as developed by Iwaniec, with a bilinear form of the remainder term, the sieve with weights, and the use of Selberg's ideas in deriving lower-bound sieves. Further developments are introduced with the support of references t. The book is suitable for university graduates making their first acquaintance with the subject, leading them towards the frontiers of modern research and unsolved problems in the subject area.
We see numbers on automobile license plates, addresses, weather reports, and, of course, on our smartphones. Yet we look at these numbers for their role as descriptors, not as an entity in and unto themselves. Each number has its own history of meaning, usage, and connotation in the larger world. The Secret Lives of Numbers takes readers on a journey through integers, considering their numerological assignments as well as their significance beyond mathematics and in the realm of popular culture. Of course we all know that the number 13 carries a certain value of unluckiness with it. The phobia of the number is called Triskaidekaphobia; Franklin Delano Roosevelt was known to invite and disinvite guests to parties to avoid having 13 people in attendance; high-rise buildings often skip the 13th floor out of superstition. There are many explanations as to how the number 13 received this negative honor, but from a mathematical point of view, the number 13 is also the smallest prime number that when its digits are reversed is also a prime number. It is honored with a place among the Fibonacci numbers and integral Pythagorean triples, as well as many other interesting and lesser-known occurrences. In The Secret Lives of Numbers, popular mathematician Alfred S. Posamentier provides short and engaging mini-biographies of more than 100 numbers, starting with 1 and featuring some especially interesting numbers -like 6,174, a number with most unusual properties -to provide readers with a more comprehensive picture of the lives of numbers both mathematically and socially.
This book is designed for a computationally intensive graduate course based around a collection of classical unsolved extremal problems for polynomials. These problems, all of which lend themselves to extensive computational exploration, live at the interface of analysis, combinatorics and number theory so the techniques involved are diverse.A main computational tool used is the LLL algorithm for finding small vectors in a lattice. Many exercises and open research problems are included. Indeed one aim of the book is to tempt the able reader into the rich possibilities for research in this area. Peter Borwein is Professor of Mathematics at Simon Fraser University and the Associate Director of the Centre for Experimental and Constructive Mathematics. He is also the recipient of the Mathematical Association of America's Chauvenet Prize and the Merten M. Hasse Prize for expository writing in mathematics.
The central theme of this book is the solution of Diophantine equations, i.e., equations or systems of polynomial equations which must be solved in integers, rational numbers or more generally in algebraic numbers. This theme, in particular, is the central motivation for the modern theory of arithmetic algebraic geometry. In this text, this is considered through three of its most basic aspects. The book contains more than 350 exercises and the text is largely self-contained. Much more sophisticated techniques have been brought to bear on the subject of Diophantine equations, and for this reason, the author has included five appendices on these techniques.
Proceedings of the Vth Nordic Summer School in Mathematics in Oslo, August 5-25, 1970
This volume is an offspring of the special semester "Ergodic Theory, Geometric Rigidity and Number Theory" held at the Isaac Newton Institute for Mathematical Sciences in Cambridge, UK, from January until July, 2000. Some of the major recent developments in rigidity theory, geometric group theory, flows on homogeneous spaces and Teichmüller spaces, quasi-conformal geometry, negatively curved groups and spaces, Diophantine approximation, and bounded cohomology are presented here. The authors have given special consideration to making the papers accessible to graduate students, with most of the contributions starting at an introductory level and building up to presenting topics at the forefront in this active field of research. The volume contains surveys and original unpublished results as well, and is an invaluable source also for the experienced researcher.
This impressive volume is dedicated to Mel Nathanson, a leading authoritative expert for several decades in the area of combinatorial and additive number theory. For several decades, Mel Nathanson's seminal ideas and results in combinatorial and additive number theory have influenced graduate students and researchers alike. The invited survey articles in this volume reflect the work of distinguished mathematicians in number theory, and represent a wide range of important topics in current research.
Partitions, q-Series, and Modular Forms contains a collection of research and survey papers that grew out of a Conference on Partitions, q-Series and Modular Forms at the University of Florida, Gainesville in March 2008. It will be of interest to researchers and graduate students that would like to learn of recent developments in the theory of q-series and modular and how it relates to number theory, combinatorics and special functions.
The book gives a comprehensive account of the basic algebraic properties of the classical groups over rings. Much of the theory appears in book form for the first time, and most proofs are given in detail. The book also includes a revised and expanded version of DieudonnA(c)'s classical theory over division rings. The authors analyse congruence subgroups, normal subgroups and quotient groups, they describe their isomorphisms and investigate connections with linear and hermitian K-theory. A first insight is offered through the simplest case of the general linear group. All the other classical groups, notably the symplectic, unitary and orthogonal groups, are dealt with uniformly as isometry groups of generalized quadratic modules. New results on the unitary Steinberg groups, the associated K2-groups and the unitary symbols in these groups lead to simplified presentation theorems for the classical groups. Related material such as the K-theory exact sequences of Bass and Sharpe and the Merkurjev-Suslin theorem is outlined. "From" "the foreword by J. DieudonnA(c): " "All mathematicians interested in classical groups should be grateful to these two outstanding investigators for having brought together old and new results (many of them their own) into a superbly organized whole. I am confident that their book will remain for a long time the standard reference in the theory."
This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas. Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars' GPS systems, in online banking, etc. Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters 2-5 and offer a glimpse of advanced results that are presented without proofs and require more advanced mathematical skills. In the last chapter they review several further applications of number theory, ranging from check-digit systems to quantum computation and the organization of raster-graphics memory. Upper-level undergraduates, graduates and researchers in the field of number theory will find this book to be a valuable resource.
Computations with Markov Chains presents the edited and reviewed proceedings of the Second International Workshop on the Numerical Solution of Markov Chains, held January 16--18, 1995, in Raleigh, North Carolina. New developments of particular interest include recent work on stability and conditioning, Krylov subspace-based methods for transient solutions, quadratic convergent procedures for matrix geometric problems, further analysis of the GTH algorithm, the arrival of stochastic automata networks at the forefront of modelling stratagems, and more. An authoritative overview of the field for applied probabilists, numerical analysts and systems modelers, including computer scientists and engineers.
'Et moi, ... si j'avait su comment en revenir, One service mathematics has rendered the je n 'y serais point aile.' human race. It has put common sense back where it belongs, on the topmost shelf next Jules Verne to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell 0. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'elre of this series."
This book contains 28 research articles from among the 49 papers and abstracts presented at the Tenth International Conference on Fibonacci Numbers and Their Applications. These articles have been selected after a careful review by expert referees, and they range over many areas of mathematics. The Fibonacci numbers and recurrence relations are their unifying bond. We note that the article "Fibonacci, Vern and Dan" , which follows the Introduction to this volume, is not a research paper. It is a personal reminiscence by Marjorie Bicknell-Johnson, a longtime member of the Fibonacci Association. The editor believes it will be of interest to all readers. It is anticipated that this book, like the eight predecessors, will be useful to research workers and students at all levels who are interested in the Fibonacci numbers and their applications. March 16, 2003 The Editor Fredric T. Howard Mathematics Department Wake Forest University Box 7388 Reynolda Station Winston-Salem, NC 27109 xxi THE ORGANIZING COMMITTEES LOCAL COMMITTEE INTERNATIONAL COMMITTEE Calvin Long, Chairman A. F. Horadam (Australia), Co-Chair Terry Crites A. N. Philippou (Cyprus), Co-Chair Steven Wilson A. Adelberg (U. S. A. ) C. Cooper (U. S. A. ) Jeff Rushal H. Harborth (Germany) Y. Horibe (Japan) M. Bicknell-Johnson (U. S. A. ) P. Kiss (Hungary) J. Lahr (Luxembourg) G. M. Phillips (Scotland) J. 'Thrner (New Zealand) xxiii xxiv LIST OF CONTRlBUTORS TO THE CONFERENCE * ADELBERG, ARNOLD, "Universal Bernoulli Polynomials and p-adic Congruences. " *AGRATINI, OCTAVIAN, "A Generalization of Durrmeyer-Type Polynomials. " BENJAMIN, ART, "Mathemagics.
This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A.
This book is concerned with discontinuous groups of motions of the unique connected and simply connected Riemannian 3-manifold of constant curva ture -1, which is traditionally called hyperbolic 3-space. This space is the 3-dimensional instance of an analogous Riemannian manifold which exists uniquely in every dimension n:::: 2. The hyperbolic spaces appeared first in the work of Lobachevski in the first half of the 19th century. Very early in the last century the group of isometries of these spaces was studied by Steiner, when he looked at the group generated by the inversions in spheres. The ge ometries underlying the hyperbolic spaces were of fundamental importance since Lobachevski, Bolyai and Gauss had observed that they do not satisfy the axiom of parallels. Already in the classical works several concrete coordinate models of hy perbolic 3-space have appeared. They make explicit computations possible and also give identifications of the full group of motions or isometries with well-known matrix groups. One such model, due to H. Poincare, is the upper 3 half-space IH in JR . The group of isometries is then identified with an exten sion of index 2 of the group PSL(2,"
In September 2000 a Summer School on "Factorization and
Integrable Systems" was held at the University of Algarve in
Portugal. The main aim of the school was to review the modern
factorization theory and its application to classical and quantum
integrable systems. The program consisted of a number of short
courses given by leading experts in the field. The lecture notes of
the courses have been specially prepared for publication in this
volume.
Approach your problem from the right It isn't that they can't see end and begin with the answers. the solution. Then one day, perhaps you will find It is that they can't see the the final question. problem. G.K. Chesterton. The Scandal The Hermit Clad in Crane Feathers in of Father Brown The Point of R. van Gulik's The Chinese Maze Murders. a Pin. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new brancheq. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics, algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisci fI plines as "experimental mathematics," "CFD, "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes."
A look at solving problems in three areas of classical elementary mathematics: equations and systems of equations of various kinds, algebraic inequalities, and elementary number theory, in particular divisibility and diophantine equations. In each topic, brief theoretical discussions are followed by carefully worked out examples of increasing difficulty, and by exercises which range from routine to rather more challenging problems. While it emphasizes some methods that are not usually covered in beginning university courses, the book nevertheless teaches techniques and skills which are useful beyond the specific topics covered here. With approximately 330 examples and 760 exercises.
This collection of course notes from a number theory summer school focus on aspects of Diophantine Analysis, addressed to Master and doctoral students as well as everyone who wants to learn the subject. The topics range from Baker's method of bounding linear forms in logarithms (authored by Sanda Bujacic and Alan Filipin), metric diophantine approximation discussing in particular the yet unsolved Littlewood conjecture (by Simon Kristensen), Minkowski's geometry of numbers and modern variations by Bombieri and Schmidt (Tapani Matala-aho), and a historical account of related number theory(ists) at the turn of the 19th Century (Nicola M.R. Oswald). Each of these notes serves as an essentially self-contained introduction to the topic. The reader gets a thorough impression of Diophantine Analysis by its central results, relevant applications and open problems. The notes are complemented with many references and an extensive register which makes it easy to navigate through the book.
A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.
|
You may like...
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
Geometry, Algebra, Number Theory, and…
Amir Akbary, Sanoli Gun
Hardcover
R4,104
Discovery Miles 41 040
Sampling Theory in Fourier and Signal…
J.R. Higgins, R.L. Stens
Hardcover
R6,169
Discovery Miles 61 690
Continued Fractions with Applications…
L. Lorentzen, H. Waadeland
Hardcover
R1,386
Discovery Miles 13 860
|