![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Number theory > General
This informative and exhaustive study gives a problem-solving approach to the difficult subject of analytic number theory. It is primarily aimed at graduate students and senior undergraduates. The goal is to provide a rapid introduction to analytic methods and the ways in which they are used to study the distribution of prime numbers. The book also includes an introduction to p-adic analytic methods. It is ideal for a first course in analytic number theory. The new edition has been completely rewritten, errors have been corrected, and there is a new chapter on the arithmetic progression of primes.
Architecture of Mathematics describes the logical structure of Mathematics from its foundations to its real-world applications. It describes the many interweaving relationships between different areas of mathematics and its practical applications, and as such provides unique reading for professional mathematicians and nonmathematicians alike. This book can be a very important resource both for the teaching of mathematics and as a means to outline the research links between different subjects within and beyond the subject. Features All notions and properties are introduced logically and sequentially, to help the reader gradually build understanding. Focusses on illustrative examples that explain the meaning of mathematical objects and their properties. Suitable as a supplementary resource for teaching undergraduate mathematics, and as an aid to interdisciplinary research. Forming the reader's understanding of Mathematics as a unified science, the book helps to increase his general mathematical culture.
This is the second in a series of three volumes dealing with important topics in algebra. Volume 2 is an introduction to linear algebra (including linear algebra over rings), Galois theory, representation theory, and the theory of group extensions. The section on linear algebra (chapters 1-5) does not require any background material from Algebra 1, except an understanding of set theory. Linear algebra is the most applicable branch of mathematics, and it is essential for students of science and engineering As such, the text can be used for one-semester courses for these students. The remaining part of the volume discusses Jordan and rational forms, general linear algebra (linear algebra over rings), Galois theory, representation theory (linear algebra over group algebras), and the theory of extension of groups follow linear algebra, and is suitable as a text for the second and third year students specializing in mathematics.
Congruences are ubiquitous in computer science, engineering, mathematics, and related areas. Developing techniques for finding (the number of) solutions of congruences is an important problem. But there are many scenarios in which we are interested in only a subset of the solutions; in other words, there are some restrictions. What do we know about these restricted congruences, their solutions, and applications? This book introduces the tools that are needed when working on restricted congruences and then systematically studies a variety of restricted congruences. Restricted Congruences in Computing defines several types of restricted congruence, obtains explicit formulae for the number of their solutions using a wide range of tools and techniques, and discusses their applications in cryptography, information security, information theory, coding theory, string theory, quantum field theory, parallel computing, artificial intelligence, computational biology, discrete mathematics, number theory, and more. This is the first book devoted to restricted congruences and their applications. It will be of interest to graduate students and researchers across computer science, electrical engineering, and mathematics.
This collaborative book presents recent trends on the study of sequences, including combinatorics on words and symbolic dynamics, and new interdisciplinary links to group theory and number theory. Other chapters branch out from those areas into subfields of theoretical computer science, such as complexity theory and theory of automata. The book is built around four general themes: number theory and sequences, word combinatorics, normal numbers, and group theory. Those topics are rounded out by investigations into automatic and regular sequences, tilings and theory of computation, discrete dynamical systems, ergodic theory, numeration systems, automaton semigroups, and amenable groups. This volume is intended for use by graduate students or research mathematicians, as well as computer scientists who are working in automata theory and formal language theory. With its organization around unified themes, it would also be appropriate as a supplemental text for graduate level courses.
Gorenstein homological algebra is an important area of mathematics, with applications in commutative and noncommutative algebra, model category theory, representation theory, and algebraic geometry. While in classical homological algebra the existence of the projective, injective, and flat resolutions over arbitrary rings are well known, things are a little different when it comes to Gorenstein homological algebra. The main open problems in this area deal with the existence of the Gorenstein injective, Gorenstein projective, and Gorenstein flat resolutions. Gorenstein Homological Algebra is especially suitable for graduate students interested in homological algebra and its applications.
Written for graduate students and researchers alike, this set of lectures provides a structured introduction to the concept of equidistribution in number theory. This concept is of growing importance in many areas, including cryptography, zeros of L-functions, Heegner points, prime number theory, the theory of quadratic forms, and the arithmetic aspects of quantum chaos. The volume brings together leading researchers from a range of fields, whose accessible presentations reveal fascinating links between seemingly disparate areas."
This is the first in a series of three volumes dealing with important topics in algebra. It offers an introduction to the foundations of mathematics together with the fundamental algebraic structures, namely groups, rings, fields, and arithmetic. Intended as a text for undergraduate and graduate students of mathematics, it discusses all major topics in algebra with numerous motivating illustrations and exercises to enable readers to acquire a good understanding of the basic algebraic structures, which they can then use to find the exact or the most realistic solutions to their problems.
Linear Algebra: Algorithms, Applications, and Techniques, Fourth Edition offers a modern and algorithmic approach to computation while providing clear and straightforward theoretical background information. The book guides readers through the major applications, with chapters on properties of real numbers, proof techniques, matrices, vector spaces, linear transformations, eigen values, and Euclidean inner products. Appendices on Jordan canonical forms and Markov chains are included for further study. This useful textbook presents broad and balanced views of theory, with key material highlighted and summarized in each chapter. To further support student practice, the book also includes ample exercises with answers and hints.
Number Theory and its Applications is a textbook for students pursuing mathematics as major in undergraduate and postgraduate courses. Please note: Taylor & Francis does not sell or distribute the print book in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
In recent years, extensive research has been conducted by eminent mathematicians and engineers whose results and proposed problems are presented in this new volume. It is addressed to graduate students, research mathematicians, physicists, and engineers. Individual contributions are devoted to topics of approximation theory, functional equations and inequalities, fixed point theory, numerical analysis, theory of wavelets, convex analysis, topology, operator theory, differential operators, fractional integral operators, integro-differential equations, ternary algebras, super and hyper relators, variational analysis, discrete mathematics, cryptography, and a variety of applications in interdisciplinary topics. Several of these domains have a strong connection with both theories and problems of linear and nonlinear optimization. The combination of results from various domains provides the reader with a solid, state-of-the-art interdisciplinary reference to theory and problems. Some of the works provide guidelines for further research and proposals for new directions and open problems with relevant discussions.
Features Uses techniques from widely diverse areas of mathematics, including number theory, calculus, set theory, complex analysis, linear algebra, and the theory of computation. Suitable as a primary textbook for advanced undergraduate courses in number theory, or as supplementary reading for interested postgraduates. Each chapter concludes with an appendix setting out the basic facts needed from each topic, so that the book is accessible to readers without any specific specialist background.
This is a 2001 account of Algebraic Number Theory, a field which has grown to touch many other areas of pure mathematics. It is written primarily for beginning graduate students in pure mathematics, and encompasses everything that most such students are likely to need; others who need the material will also find it accessible. It assumes no prior knowledge of the subject, but a firm basis in the theory of field extensions at an undergraduate level is required, and an appendix covers other prerequisites. The book covers the two basic methods of approaching Algebraic Number Theory, using ideals and valuations, and includes material on the most usual kinds of algebraic number field, the functional equation of the zeta function and a substantial digression on the classical approach to Fermat's Last Theorem, as well as a comprehensive account of class field theory. Many exercises and an annotated reading list are also included.
The main topics of this volume, dedicated to Lance Littlejohn, are operator and spectral theory, orthogonal polynomials, combinatorics, number theory, and the various interplays of these subjects. Although the event, originally scheduled as the Baylor Analysis Fest, had to be postponed due to the pandemic, scholars from around the globe have contributed research in a broad range of mathematical fields. The collection will be of interest to both graduate students and professional mathematicians. Contributors are: G.E. Andrews, B.M. Brown, D. Damanik, M.L. Dawsey, W.D. Evans, J. Fillman, D. Frymark, A.G. Garcia, L.G. Garza, F. Gesztesy, D. Gomez-Ullate, Y. Grandati, F.A. Grunbaum, S. Guo, M. Hunziker, A. Iserles, T.F. Jones, K. Kirsten, Y. Lee, C. Liaw, F. Marcellan, C. Markett, A. Martinez-Finkelshtein, D. McCarthy, R. Milson, D. Mitrea, I. Mitrea, M. Mitrea, G. Novello, D. Ong, K. Ono, J.L. Padgett, M.M.M. Pang, T. Poe, A. Sri Ranga, K. Schiefermayr, Q. Sheng, B. Simanek, J. Stanfill, L. Velazquez, M. Webb, J. Wilkening, I.G. Wood, M. Zinchenko.
This book contains a complete detailed description of two classes of special numbers closely related to classical problems of the Theory of Primes. There is also extensive discussions of applied issues related to Cryptography.In Mathematics, a Mersenne number (named after Marin Mersenne, who studied them in the early 17-th century) is a number of the form Mn = 2n - 1 for positive integer n.In Mathematics, a Fermat number (named after Pierre de Fermat who first studied them) is a positive integer of the form Fn = 2k+ 1, k=2n, where n is a non-negative integer.Mersenne and Fermat numbers have many other interesting properties. Long and rich history, many arithmetic connections (with perfect numbers, with construction of regular polygons etc.), numerous modern applications, long list of open problems allow us to provide a broad perspective of the Theory of these two classes of special numbers, that can be useful and interesting for both professionals and the general audience.
In today's unsafe and increasingly wired world cryptology plays a vital role in protecting communication channels, databases, and software from unwanted intruders. This revised and extended third edition of the classic reference work on cryptology now contains many new technical and biographical details. The first part treats secret codes and their uses - cryptography. The second part deals with the process of covertly decrypting a secret code - cryptanalysis, where particular advice on assessing methods is given. The book presupposes only elementary mathematical knowledge. Spiced with a wealth of exciting, amusing, and sometimes personal stories from the history of cryptology, it will also interest general readers.
This book deals with several aspects of what is now called "explicit number theory." The central theme is the solution of Diophantine equations, i.e., equations or systems of polynomial equations which must be solved in integers, rational numbers or more generally in algebraic numbers. This theme, in particular, is the central motivation for the modern theory of arithmetic algebraic geometry. In this text, this is considered through three of its most basic aspects. The local aspect, global aspect, and the third aspect is the theory of zeta and L-functions. This last aspect can be considered as a unifying theme for the whole subject.
This volume presents the collection of mathematical articles by Martin Kneser, reprinted in the original language - mostly German -, including one yet unpublished. Moreover, also included is an article by Raman Parimala, discussing Kneser's work concerning algebraic groups and the Hasse principle, which has been written especially for this volume, as well as an article by Rudolf Scharlau about Kneser's work on quadratic forms, published elsewhere before. Another commentary article, written by Gunter M. Ziegler especially for this volume, describes the astounding influence on the field of combinatorics of what was published as "Aufgabe 360" and its subsequent solution in 1955 resp. 1957 in the "Jahresbericht der Deutschen Mathematiker-Vereinigung". However, as the titles of the articles show, Kneser's mathematical interests were much broader, which is beautifully discussed in an obituary by Ulrich Stuhler, included as well in this volume.
This book contains selected chapters on perfectoid spaces, their introduction and applications, as invented by Peter Scholze in his Fields Medal winning work. These contributions are presented at the conference on "Perfectoid Spaces" held at the International Centre for Theoretical Sciences, Bengaluru, India, from 9-20 September 2019. The objective of the book is to give an advanced introduction to Scholze's theory and understand the relation between perfectoid spaces and some aspects of arithmetic of modular (or, more generally, automorphic) forms such as representations mod p, lifting of modular forms, completed cohomology, local Langlands program, and special values of L-functions. All chapters are contributed by experts in the area of arithmetic geometry that will facilitate future research in the direction.
Elementary Number Theory, Gove Effinger, Gary L. Mullen This text is intended to be used as an undergraduate introduction to the theory of numbers. The authors have been immersed in this area of mathematics for many years and hope that this text will inspire students (and instructors) to study, understand, and come to love this truly beautiful subject. Each chapter, after an introduction, develops a new topic clearly broken out in sections which include theoretical material together with numerous examples, each worked out in considerable detail. At the end of each chapter, after a summary of the topic, there are a number of solved problems, also worked out in detail, followed by a set of supplementary problems. These latter problems give students a chance to test their own understanding of the material; solutions to some but not all of them complete the chapter. The first eight chapters discuss some standard material in elementary number theory. The remaining chapters discuss topics which might be considered a bit more advanced. The text closes with a chapter on Open Problems in Number Theory. Students (and of course instructors) are strongly encouraged to study this chapter carefully and fully realize that not all mathematical issues and problems have been resolved! There is still much to be learned and many questions to be answered in mathematics in general and in number theory in particular.
This book develops a novel approach to perturbative quantum field theory: starting with a perturbative formulation of classical field theory, quantization is achieved by means of deformation quantization of the underlying free theory and by applying the principle that as much of the classical structure as possible should be maintained. The resulting formulation of perturbative quantum field theory is a version of the Epstein-Glaser renormalization that is conceptually clear, mathematically rigorous and pragmatically useful for physicists. The connection to traditional formulations of perturbative quantum field theory is also elaborated on, and the formalism is illustrated in a wealth of examples and exercises.
Complex Numbers lie at the heart of most technical and scientific subjects. This book can be used to teach complex numbers as a course text,a revision or remedial guide, or as a self-teaching work. The author has designed the book to be a flexible learning tool, suitable for A-Level students as well as other students in higher and further education whose courses include a substantial maths component (e.g. BTEC or GNVQ science and engineering courses). Verity Carr has accumulated nearly thirty years of experience teaching mathematics at all levels and has a rare gift for making mathematics simple and enjoyable. At Brooklands College, she has taken a leading role in the development of a highly successful Mathematics Workshop. This series of Made Simple Maths books widens her audience but continues to provide the kind of straightforward and logical approach she has developed over her years of teaching.
This book offers the basics of algebraic number theory for students and others who need an introduction and do not have the time to wade through the voluminous textbooks available. It is suitable for an independent study or as a textbook for a first course on the topic. The author presents the topic here by first offering a brief introduction to number theory and a review of the prerequisite material, then presents the basic theory of algebraic numbers. The treatment of the subject is classical but the newer approach discussed at the end provides a broader theory to include the arithmetic of algebraic curves over finite fields, and even suggests a theory for studying higher dimensional varieties over finite fields. It leads naturally to the Weil conjecture and some delicate questions in algebraic geometry. About the Author Dr. J. S. Chahal is a professor of mathematics at Brigham Young University. He received his Ph.D. from Johns Hopkins University and after spending a couple of years at the University of Wisconsin as a post doc, he joined Brigham Young University as an assistant professor and has been there ever since. He specializes and has published several papers in number theory. For hobbies, he likes to travel and hike. His book, Fundamentals of Linear Algebra, is also published by CRC Press.
In 1988 Shafarevich asked me to write a volume for the Encyclopaedia of Mathematical Sciences on Diophantine Geometry. I said yes, and here is the volume. By definition, diophantine problems concern the solutions of equations in integers, or rational numbers, or various generalizations, such as finitely generated rings over Z or finitely generated fields over Q. The word Geometry is tacked on to suggest geometric methods. This means that the present volume is not elementary. For a survey of some basic problems with a much more elementary approach, see La 9Oc]. The field of diophantine geometry is now moving quite rapidly. Out standing conjectures ranging from decades back are being proved. I have tried to give the book some sort of coherence and permanence by em phasizing structural conjectures as much as results, so that one has a clear picture of the field. On the whole, I omit proofs, according to the boundary conditions of the encyclopedia. On some occasions I do give some ideas for the proofs when these are especially important. In any case, a lengthy bibliography refers to papers and books where proofs may be found. I have also followed Shafarevich's suggestion to give examples, and I have especially chosen these examples which show how some classical problems do or do not get solved by contemporary in sights. Fermat's last theorem occupies an intermediate position. Al though it is not proved, it is not an isolated problem any more."
P-adic Analytic Functions describes the definition and properties of p-adic analytic and meromorphic functions in a complete algebraically closed ultrametric field.Various properties of p-adic exponential-polynomials are examined, such as the Hermite-Lindemann theorem in a p-adic field, with a new proof. The order and type of growth for analytic functions are studied, in the whole field and inside an open disk. P-adic meromorphic functions are studied, not only on the whole field but also in an open disk and on the complemental of an open disk, using Motzkin meromorphic products. Finally, the p-adic Nevanlinna theory is widely explained, with various applications. Small functions are introduced with results of uniqueness for meromorphic functions. The question of whether the ring of analytic functions-in the whole field or inside an open disk-is a Bezout ring is also examined. |
You may like...
Borel's Methods of Summability - Theory…
Bruce L.R. Shawyer, Bruce Watson
Hardcover
R2,770
Discovery Miles 27 700
Sampling Theory in Fourier and Signal…
J.R. Higgins, R.L. Stens
Hardcover
R6,169
Discovery Miles 61 690
|