![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Number theory
Calculus in Vector Spaces addresses linear algebra from the basics to the spectral theorem and examines a range of topics in multivariable calculus. This second edition introduces, among other topics, the derivative as a linear transformation, presents linear algebra in a concrete context based on complementary ideas in calculus, and explains differential forms on Euclidean space, allowing for Green's theorem, Gauss's theorem, and Stokes's theorem to be understood in a natural setting. Mathematical analysts, algebraists, engineers, physicists, and students taking advanced calculus and linear algebra courses should find this book useful.
The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following the papers of Bombieri and Vojta. Also acting as a concise introduction to Diophantine geometry, the text starts from basics of algebraic number theory, touches on several important theorems and techniques (including the theory of heights, the Mordell-Weil theorem, Siegel's lemma and Roth's lemma) from Diophantine geometry, and culminates in the proof of the Mordell conjecture. Based on the authors' own teaching experience, it will be of great value to advanced undergraduate and graduate students in algebraic geometry and number theory, as well as researchers interested in Diophantine geometry as a whole.
Interest in the study of geometry is currently enjoying a resurgence-understandably so, as the study of curves was once the playground of some very great mathematicians. However, many of the subject's more exciting aspects require a somewhat advanced mathematics background. For the "fun stuff" to be accessible, we need to offer students an introduction with modest prerequisites, one that stimulates their interest and focuses on problem solving. Integrating parametric, algebraic, and projective curves into a single text, Geometry of Curves offers students a unique approach that provides a mathematical structure for solving problems, not just a catalog of theorems. The author begins with the basics, then takes students on a fascinating journey from conics, higher algebraic and transcendental curves, through the properties of parametric curves, the classification of limacons, envelopes, and finally to projective curves, their relationship to algebraic curves, and their application to asymptotes and boundedness. The uniqueness of this treatment lies in its integration of the different types of curves, its use of analytic methods, and its generous number of examples, exercises, and illustrations. The result is a practical text, almost entirely self-contained, that not only imparts a deeper understanding of the theory, but inspires a heightened appreciation of geometry and interest in more advanced studies.
The Rogers--Ramanujan identities are a pair of infinite series-infinite product identities that were first discovered in 1894. Over the past several decades these identities, and identities of similar type, have found applications in number theory, combinatorics, Lie algebra and vertex operator algebra theory, physics (especially statistical mechanics), and computer science (especially algorithmic proof theory). Presented in a coherant and clear way, this will be the first book entirely devoted to the Rogers-Ramanujan identities and will include related historical material that is unavailable elsewhere.
Complex Lie groups have often been used as auxiliaries in the study of real Lie groups in areas such as differential geometry and representation theory. To date, however, no book has fully explored and developed their structural aspects. The Structure of Complex Lie Groups addresses this need. Self-contained, it begins with general concepts introduced via an almost complex structure on a real Lie group. It then moves to the theory of representative functions of Lie groups- used as a primary tool in subsequent chapters-and discusses the extension problem of representations that is essential for studying the structure of complex Lie groups. This is followed by a discourse on complex analytic groups that carry the structure of affine algebraic groups compatible with their analytic group structure. The author then uses the results of his earlier discussions to determine the observability of subgroups of complex Lie groups. The differences between complex algebraic groups and complex Lie groups are sometimes subtle and it can be difficult to know which aspects of algebraic group theory apply and which must be modified. The Structure of Complex Lie Groups helps clarify those distinctions. Clearly written and well organized, this unique work presents material not found in other books on Lie groups and serves as an outstanding complement to them.
Covering important aspects of the theory of unitary representations of nuclear Lie groups, this self-contained reference presents the general theory of energy representations and addresses various extensions of path groups and algebras.;Requiring only a general knowledge of the theory of unitary representations, topological groups and elementary stochastic analysis, Noncommutative Distributions: examines a theory of noncommutative distributions as irreducible unitary representations of groups of mappings from a manifold into a Lie group, with applications to gauge-field theories; describes the energy representation when the target Lie group G is compact; discusses representations of G-valued jet bundles when G is not necessarily compact; and supplies a synthesis of deep results on quasi-simple Lie algebras.;Providing over 200 bibliographic citations, drawings, tables, and equations, Noncommutative Distributions is intended for research mathematicians and theoretical and mathematical physicists studying current algebras, the representation theory of Lie groups, and quantum field theory, and graduate students in these disciplines.
Presenting the proceedings of a recently held conference in Provo, Utah, this reference provides original research articles in several different areas of number theory, highlighting the Markoff spectrum.;Detailing the integration of geometric, algebraic, analytic and arithmetic ideas, Number Theory with an Emphasis on the Markoff Spectrum contains refereed contributions on: general problems of diophantine approximation; quadratic forms and their connections with automorphic forms; the modular group and its subgroups; continued fractions; hyperbolic geometry; and the lower part of the Markoff spectrum.;Written by over 30 authorities in the field, this book should be a useful resource for research mathematicians in harmonic analysis, number theory algebra, geometry and probability and graduate students in these disciplines.
This volume contains information offered at the international conference held in Curacao, Netherlands Antilles. It presents the latest developments in the most active areas of abelian groups, particularly in torsion-free abelian groups.;For both researchers and graduate students, it reflects the current status of abelian group theory.;Abelian Groups discusses: finite rank Butler groups; almost completely decomposable groups; Butler groups of infinite rank; equivalence theorems for torsion-free groups; cotorsion groups; endomorphism algebras; and interactions of set theory and abelian groups.;This volume contains contributions from international experts. It is aimed at algebraists and logicians, research mathematicians, and advanced graduate students in these disciplines.
The subject of this book is arithmetic algebraic geometry, an area between number theory and algebraic geometry. It is about applying geometric methods to the study of polynomial equations in rational numbers (Diophantine equations). This book represents the first complete and coherent exposition in a single volume, of both the theory and applications of torsors to rational points. Some very recent material is included. It is demonstrated that torsors provide a unified approach to several branches of the theory which were hitherto developing in parallel.
Part I (eleven chapters) of this text for graduate students provides a Survey of topological fields, while Part II (five chapters) provides a relatively more idiosyncratic account of valuation theory. No exercises but a good number of examples; appendices support the author in his intent, which ha
This book comprises five parts. The first three contain ten historical essays on important topics: number theory, calculus/analysis, and proof, respectively. Part four deals with several historically oriented courses, and Part five provides biographies of five mathematicians who played major roles in the historical events described in the first four parts of the work. "Excursions in the History of Mathematics" was written with several goals in mind: to arouse mathematics teachers' interest in the history of their subject; to encourage mathematics teachers with at least some knowledge of the history of mathematics to offer courses with a strong historical component; and to provide an historical perspective on a number of basic topics taught in mathematics courses."
This collection of research papers, originally published in 1985, brings together twelve articles by distinguished contributors.
The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. General algebra, more specifically non-commutative algebra, is poised for major advances in the twenty-first century (together with and in interaction with combinatorics), just as topology, analysis, and probability experienced in the twentieth century. This volume is a continuation and an in-depth study, stressing the non-commutative nature of the first two volumes of Algebras, Rings and Modules by M. Hazewinkel, N. Gubareni, and V. V. Kirichenko. It is largely independent of the other volumes. The relevant constructions and results from earlier volumes have been presented in this volume.
Combining concepts of mathematics and computer science, this book is about the sequences of symbols that can be generated by simple models of computation called "finite automata". Suitable for graduate students or advanced undergraduates, it starts from elementary principles and develops the basic theory. The study then progresses to show how these ideas can be applied to solve problems in number theory and physics.
This introductory textbook takes a problem-solving approach to number theory, situating each concept within the framework of an example or a problem for solving. Starting with the essentials, the text covers divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Included are sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems. By emphasizing examples and applications the authors motivate and engage readers.
This book provides a lucid exposition of the connections between non-commutative geometry and the famous Riemann Hypothesis, focusing on the theory of one-dimensional varieties over a finite field. The reader will encounter many important aspects of the theory, such as Bombieri's proof of the Riemann Hypothesis for function fields, along with an explanation of the connections with Nevanlinna theory and non-commutative geometry. The connection with non-commutative geometry is given special attention, with a complete determination of the Weil terms in the explicit formula for the point counting function as a trace of a shift operator on the additive space, and a discussion of how to obtain the explicit formula from the action of the idele class group on the space of adele classes. The exposition is accessible at the graduate level and above, and provides a wealth of motivation for further research in this area.
The Primality Testing Problem (PTP) has now proved to be solvable in deterministic polynomial-time (P) by the AKS (Agrawal-Kayal-Saxena) algorithm, whereas the Integer Factorization Problem (IFP) still remains unsolvable in (P). There is still no polynomial-time algorithm for IFP. Many practical public-key cryptosystems and protocols such as RSA (Rivest-Shamir-Adleman) rely their security on computational intractability of IFP. Primality Testing and Integer Factorization in Public Key Cryptography, Second Edition, provides a survey of recent progress in primality testing and integer factorization, with implications to factoring based public key cryptography. Notable new features are the comparison of Rabin-Miller probabilistic test in RP, Atkin-Morain elliptic curve test in ZPP and AKS deterministic test. This volume is designed for advanced level students in computer science and mathematics, and as a secondary text or reference book; suitable for practitioners and researchers in industry. First edition was very positively reviewed by Prof Samuel Wagstaff at Purdue University in AMS Mathematical Reviews (See MR2028480 2004j: 11148), and by Professor J.T. Ayuso of University of Simon Bolivar in the European Mathematical Societya (TM)s review journal Zentralblatt fA1/4r Mathematik (see Zbl 1048.11103).
This proceedings volume gathers selected, peer-reviewed papers presented at the 2nd International Conference on Mathematics and its Applications in Science and Engineering - ICMASE 2021, which was virtually held on July 1-2, 2021 by the University of Salamanca, Spain. Works included in this book cover applications of mathematics both in engineering research and in real-world problems, touching topics such as difference equations, number theory, optimization, and more. The list of applications includes the modeling of mechanical structures, the shape of machines, and the growth of a population, expanding to fields like information security and cryptography. Advances in teaching and learning mathematics in the context of engineering courses are also covered.This volume can be of special interest to researchers in applied mathematics and engineering fields, as well as practitioners seeking studies that address real-life problems in engineering.
This book provides an account of part of the theory of Lie algebras most relevant to Lie groups. It discusses the basic theory of Lie algebras, including the classification of complex semisimple Lie algebras, and the Levi, Cartan and Iwasawa decompositions.
This graduate-level textbook provides an elementary exposition of the theory of automorphic representations and L-functions for the general linear group in an adelic setting. Definitions are kept to a minimum and repeated when reintroduced so that the book is accessible from any entry point, and with no prior knowledge of representation theory. The book includes concrete examples of global and local representations of GL(n), and presents their associated L-functions. In Volume 1, the theory is developed from first principles for GL(1), then carefully extended to GL(2) with complete detailed proofs of key theorems. Several proofs are presented for the first time, including Jacquet's simple and elegant proof of the tensor product theorem. In Volume 2, the higher rank situation of GL(n) is given a detailed treatment. Containing numerous exercises by Xander Faber, this book will motivate students and researchers to begin working in this fertile field of research.
This book examines some aspects of homogeneous Banach algebras and related topics to illustrate various methods used in several classes of group algebras. It guides the reader toward some of the problems in harmonic analysis such as the problems of factorizations and closed subalgebras.
In this book, we first review the history and current situation of the perfect number problem, including the origin story of the Mersenne primes, and then consider the history and current situation of the Fibonacci sequence. Both topics include results from our own research. In the later sections, we define the square sum perfect numbers, and describe for the first time the secret relationships connecting the square sum perfect numbers, the Fibonacci sequence, the Lucas sequence, the twin prime conjecture, and the Fermat primes. Throughout, we raise various interesting questions and conjectures.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
This volume presents a set of models for the exceptional Lie algebras over algebraically closed fieldsof characteristic O and over the field of real numbers. The models given are based on the algebras ofCayley numbers (octonions) and on exceptional Jordan algebras. They are also valid forcharacteristics p * 2. The book also provides an introduction to the problem of forms of exceptionalsimple Lie algebras, especially the exceptional D4 's, 6 's, and 7 's. These are studied by means ofconcrete realizations of the automorphism groups.Exceptional Lie Algebras is a useful tool for the mathematical public in general-especially thoseinterested in the classification of Lie algebras or groups-and for theoretical physicists. |
![]() ![]() You may like...
Introduction to Parallel Computing - A…
Wesley Petersen, Peter Arbenz
Hardcover
R6,204
Discovery Miles 62 040
Limits to Parallel Computation…
Raymond Greenlaw, H. James Hoover, …
Hardcover
R5,628
Discovery Miles 56 280
Distributed and Parallel Systems - From…
Peter Kacsuk, Gabriele Kotsis
Hardcover
R5,718
Discovery Miles 57 180
Parallel Computing: Fundamentals…
E.H. D'Hollander, G.R. Joubert, …
Hardcover
R7,110
Discovery Miles 71 100
Input/Output in Parallel and Distributed…
Ravi Jain, John Werth, …
Hardcover
R5,816
Discovery Miles 58 160
|