|
|
Books > Science & Mathematics > Physics > Relativity physics > General
The book aims to give a mathematical presentation of the theory of
general relativity (that is, spacetime-geometry-based gravitation
theory) to advanced undergraduate mathematics students.
Mathematicians will find spacetime physics presented in the
definition-theorem-proof format familiar to them. The given precise
mathematical definitions of physical notions help avoiding
pitfalls, especially in the context of spacetime physics describing
phenomena that are counter-intuitive to everyday experiences.In the
first part, the differential geometry of smooth manifolds, which is
needed to present the spacetime-based gravitation theory, is
developed from scratch. Here, many of the illustrating examples are
the Lorentzian manifolds which later serve as spacetime models.
This has the twofold purpose of making the physics forthcoming in
the second part relatable, and the mathematics learnt in the first
part less dry. The book uses the modern coordinate-free language of
semi-Riemannian geometry. Nevertheless, to familiarise the reader
with the useful tool of coordinates for computations, and to bridge
the gap with the physics literature, the link to coordinates is
made through exercises, and via frequent remarks on how the two
languages are related.In the second part, the focus is on physics,
covering essential material of the 20th century spacetime-based
view of gravity: energy-momentum tensor field of matter, field
equation, spacetime examples, Newtonian approximation, geodesics,
tests of the theory, black holes, and cosmological models of the
universe.Prior knowledge of differential geometry or physics is not
assumed. The book is intended for self-study, and the solutions to
the (over 200) exercises are included.
Here a physicist and a professor of literature guide general
readers through the ideas that revolutionized our conception of the
physical universe.
Die vorliegende Schrift behandelt die Kalenderlehre unter bewuBter
Ausscheidung aller historischen Betrachtungen. Liegt darin
einerseits e: ne Beschrankung, so glaubt der Ver fasser
andererseits durch die Loslosung von der vielverschlungenen und
daher mit mancherlei Ballast behafteten Entwickelungs geschichte
des Kalenderwesens dessen mathematischen Kern sozusagen reinlicher
herausschalen zu konnen, als es bei einer historischen Darstellung
moglich ware. Die Schrift wendet sich an einen sehr allgemeinen
Leser kreis. Sie mochte jedem Gebildeten zuganglich sein, der mathe
matischen Oberlegungen einfachster Art Interesse entgegen bringt.
Da und dort mag vieHeicht der Historiker bei chrono logischen
Untersuchungen aus ihr Nutzen ziehen konnen. Eine besondere Freude
ware es dem V erfasser, wenn zuweilen ein Feldgrauer nach dem
Schriftchen griffe; weiB er doch aus eigener Erfahrung, wie es
Zeiten gibt, in denen der Soldat nach irgendwelcher geistigen
Anregung hungert - ganz ab gesehen davon, daB es im Felde von
praktischem Interesse sein kann, nach kurzer Dberlegung zu wissen,
welche Mondphase einem gegebenen Datum zukommt. Aber dariiber
hinaus mochte das Biichlein auch dem an gehenden Mathematiker etwas
zu sagen haben, und vor aHem dem Unterricht an hoheren Schulen
dienen. Sollte die Schrift einem so verschiedenartigen Leserkreise
gerecht werden, so war dies nur moglich durch eine besondere
Behandlungsweise des Stoffes: die Darstellung zerfallt gewisser
maBen in mehrere "Kreise," deren jeder in sich geschlossen und
verstandlich ist. Der engste erfordert kaum mehr, als die Kennt nis
der vier Grundrechnungsarten. Der nachste setzt schon Vorwort."
Gravity is one of the four fundamental interactions that exist in
nature. It also has the distinction of being the oldest, weakest,
and most difficult force to quantize. Understanding gravity is not
only essential for understanding the motion of objects on Earth,
but also the motion of all celestial objects, and even the
expansion of the Universe itself. It was the study of gravity that
led Einstein to his profound realisations about the nature of space
and time. Gravity is not only universal, it is also essential for
understanding the behaviour of the Universe, and all astrophysical
bodies within it. In this Very Short Introduction Timothy Clifton
looks at the development of our understanding of gravity since the
early observations of Kepler and Newtonian theory. He discusses
Einstein's theory of gravity, which now supplants Newton's, showing
how it allows us to understand why the frequency of light changes
as it passes through a gravitational field, why GPS satellites need
their clocks corrected as they orbit the Earth, and why the orbits
of distant neutron stars speed up. Today, almost 100 years after
Einstein published his theory of gravity, we have even detected the
waves of gravitational radiation that he predicted. Clifton
concludes by considering the testing and application of general
relativity in astrophysics and cosmology, and looks at dark energy
and efforts such as string theory to combine gravity with quantum
mechanics. ABOUT THE SERIES: The Very Short Introductions series
from Oxford University Press contains hundreds of titles in almost
every subject area. These pocket-sized books are the perfect way to
get ahead in a new subject quickly. Our expert authors combine
facts, analysis, perspective, new ideas, and enthusiasm to make
interesting and challenging topics highly readable.
 |
Space-Time-Matter
(Paperback)
Vesselin Petkov; Translated by Henry L Brose; Hermann Weyl
|
R641
Discovery Miles 6 410
|
Ships in 18 - 22 working days
|
|
|
|
|