![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Relativity physics > General
Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. These conditions are shown to be satisfied in the vicinity of stars of more than twice the solar mass near the endpoint of their nuclear evolution, and in a time-reversed sense for the universe as a whole. In the first case, the singularity in our past. A discussion of the Cauchy problem for General Relativity is also included in the book.
Starting with the description of our home galaxy the Milky Way, this cogently written textbook introduces the reader to the astronomy of galaxies, their structure, active galactic nuclei, evolution and large scale distribution. Then, from the extensive and thorough introduction to modern observational and theoretical cosmology, the text turns to the formation of structures and astronomical objects in the early universe. The basics of classical astronomy and stellar astrophysics needed for extragalactic astronomy are given in the appendix. In particular, Peter Schneider s Extragalactic Astronomy and Cosmology has the goal of imparting the fundamental knowledge of this fascinating subfield of astronomy, while leading readers to the forefront of astronomical research. But it seeks to accomplish this not only with extensive textual information and insights. In addition, the author s evident admiration for the workings of the universe that shines through the lines and the many supporting color illustrations will deeply inspire the reader. While this book has grown out of introductory university courses on astronomy and astrophysics, it will not only be appreciated by undergraduate students and lecturers. Through the comprehensive coverage of the field, even graduate students and researchers specializing in related fields will appreciate it as reliable reference."
This monograph presents the first detailed exposition of the formal theory of Branching Space-Times. The theory presented here by Nuel Belnap, Thomas Muller, and Tomasz Placek describes how real possibilities can play out in our spatio-temporal world. In our world, some things that are really possible in Cleveland are not really possible in San Francisco; other things were really possible in 1988 but are not really possible in 2021. The authors develop a rigorous, relativity-friendly theory of indeterminism as a local and modal concept, demonstrating that our world contains events with alternative possible outcomes. The book is divided into two parts. The first contains the exposition of the theory, including detailed proofs. The second contains three applications of Branching Space-Times in metaphysics and philosophy of science, focusing on the use of Branching Space-Times to represent pertinent forms of indeterminism in each area. Some specific applications include a formal analysis of modal correlations and of causation and a rigorous theory of objective single-case probabilities, intended to represent degrees of possibility. The authors link their theory to current physics, investigating how local and modal indeterminism relates to issues in the foundations of physics, particularly in quantum non-locality and spatio-temporal relativity. They also relate the theory to philosophy of time, showing how it may be used to explicate the dynamic concept of the past, present, and future based on local indeterminism. The Branching Space-Times theory has been in development over the past 25 years. This volume provides a much needed first systematic and comprehensive book-length exposition of both the theory and its applications. This is an open access title available under the terms of a CC BY-NC-ND 4.0 International license. It is free to read at Oxford Scholarship Online and offered as a free PDF download from OUP and selected open access locations.
Our esteemed colleague C. V. Vishveshwara, popularly known as Vishu, turned sixty on 6th March 1998. His colleagues and well wishers felt that it would be appropriate to celebrate the occasion by bringing out a volume in his honour. Those of us who have had the good fortune to know Vishu, know that he is unique, in a class by himself. Having been given the privilege to be the volume's editors, we felt that we should attempt something different in this endeavour. Vishu is one of the well known relativists from India whose pioneer ing contributions to the studies of black holes is universally recognised. He was a student of Charles Misner. His Ph. D. thesis on the stability of the Schwarzschild black hole, coordinate invariant characterisation of the sta tionary limit and event horizon for Kerr black holes and subsequent seminal work on quasi-normal modes of black holes have passed on to become the starting points for detailed mathematical investigations on the nature of black holes. He later worked on other aspects related to black holes and compact objects. Many of these topics have matured over the last thirty years. New facets have also developed and become current areas of vigorous research interest. No longer are black holes, ultracompact objects or event horizons mere idealisations of mathematical physicists but concrete entities that astrophysicists detect, measure and look for. Astrophysical evidence is mounting up steadily for black holes."
The Physics of the Early Universe is an edited and expanded version of the lectures given at a recent summer school of the same name. Its aim is to present an advanced multi-authored textbook that meets the needs of both postgraduate students and young researchers interested in, or already working on, problems in cosmology and general relativity, with emphasis on the early universe. A particularly strong feature of the present work is the constructive-critical approach to the present mainstream theories, the careful assessment of some alternative approaches, and the overall balance between theoretical and observational considerations. As such, this book will also benefit experienced scientists and nonspecialists from related areas of research.
Einstein's general theory of relativity is widely considered to be one of the most elegant and successful scientific theories ever developed, and it is increasingly being taught in a simplified form at advanced undergraduate level within both physics and mathematics departments. Due to the increasing interest in gravitational physics, in both the academic and the public sphere, driven largely by widely-publicised developments such as the recent observations of gravitational waves, general relativity is also one of the most popular scientific topics pursued through self-study. Modern General Relativity introduces the reader to the general theory of relativity using an example-based approach, before describing some of its most important applications in cosmology and astrophysics, such as gamma-ray bursts, neutron stars, black holes, and gravitational waves. With hundreds of worked examples, explanatory boxes, and end-of-chapter problems, this textbook provides a solid foundation for understanding one of the towering achievements of twentieth-century physics.
Each of this book's 32 essays discusses a chosen topic, at a level that is generally within that of a four-year degree course in Physics. The essays supplement (indeed sometimes correct) treatments usually given, or supplies reasoning that tends to fall through the cracks. The author uses his life long experience of tutorial teaching at Oxford to know what topics often need such discussion, for clarification, or for avoidance of common confusions. The book contains accounts of even-standard topics, accounts that offer an unusual emphasis, or a fresh insight, or more than customary rigour, or a cross-link to apparently unrelated material. The student (and their teachers) who really wants to understand physics will find this book indispensable. Often the outcome of tutorial discussion has been an understanding that lies a little to the side of what is presented in standard texts. Such understanding is presented here in the essays. The topics covered are diverse and have something useful to say across most areas of a physics degree.
Written by a former Olympiad student, Wang Jinhui, and a Physics Olympiad national trainer, Bernard Ricardo, Competitive Physics delves into the art of solving challenging physics puzzles. This book not only expounds a multitude of physics topics from the basics but also illustrates how these theories can be applied to problems, often in an elegant fashion. With worked examples that depict various problem-solving sleights of hand and interesting exercises to enhance the mastery of such techniques, readers will hopefully be able to develop their own insights and be better prepared for physics competitions. Ultimately, problem-solving is a craft that requires much intuition. Yet this intuition, perhaps, can only be honed by trudging through an arduous but fulfilling journey of enigmas.This is the second part of a two-volume series and will mainly analyze thermodynamics, electromagnetism and special relativity. A brief overview of geometrical optics is also included.
Suitable for a one-semester course in general relativity for senior undergraduates or beginning graduate students, this text clarifies the mathematical aspects of Einstein's theory of relativity without sacrificing physical understanding. The text begins with an exposition of those aspects of tensor calculus and differential geometry needed for a proper treatment of the subject. The discussion then turns to the spacetime of general relativity and to geodesic motion. A brief consideration of the field equations is followed by a discussion of physics in the vicinity of massive objects, including an elementary treatment of black holes and rotating objects. The main text concludes with introductory chapters on gravitational radiation and cosmology. This new third edition has been updated to take account of fresh observational evidence and experiments.
Covariant Physics: From Classical Mechanics to General Relativity and Beyond endeavours to provide undergraduate students as well as self-learners with training in the fundamentals of the modern theories of spacetime, most notably the general theory of relativity as well as physics in curved spacetime backgrounds in general. This text does so with the barest of mathematical preparation. In fact, very little beyond multivariable calculus and a bit of linear algebra is assumed. Throughout this textbook, the main theme tying the various topics is the so-called principle of covariance - a fundamental symmetry of physics that one rarely encounters in undergraduate texts. The material is introduced very gradually, starting with the simplest of high school mathematics, and moving through the more intense notions of tensor calculus, geometry, and differential forms with ease. Familiar notions from classical mechanics and electrodynamics are used to increase familiarity with the advanced mathematical ideas, and to emphasize the unity of all of physics under the single principle of covariance. The mathematical and physical techniques developed in this book should allow students to perform research in various fields of theoretical physics as early as their sophomore year in college. The language the reader will learn in this book is the foundational mathematical language of many modern branches of physics, and as such should allow them to read and generally understand many modern physics papers.
Bradford Skow presents an original defense of the 'block universe' theory of time, often said to be a theory according to which time does not pass. Along the way, he provides in-depth discussions of alternative theories of time, including those in which there is 'robust passage' of time or 'objective becoming': presentism, the moving spotlight theory of time, the growing block theory of time, and the 'branching time' theory of time. Skow explains why the moving spotlight theory is the best of these arguments, and rebuts several popular arguments against the thesis that time passes. He surveys the problems that the special theory of relativity has been thought to raise for objective becoming, and suggests ways in which fans of objective becoming may reconcile their view with relativistic physics. The last third of the book aims to clarify and evaluate the argument that we should believe that time passes because, somehow, the passage of time is given to us in experience. He isolates three separate arguments this idea suggests, and explains why they fail.
With this reader-friendly book, it doesn't take an Einstein to understand the theory of relativity and its remarkable consequences.
A superlative, fascinating graphic account of Albert Einstein's strange world and how his legacy has been built upon since. It is now more than a century since Einstein's theories of Special and General Relativity began to revolutionise our view of the universe. Beginning near the speed of light and proceeding to explorations of space-time and curved spaces, Introducing Relativity plots a visually accessible course through the thought experiments that have given shape to contemporary physics. Scientists from Isaac Newton to Stephen Hawking add their unique contributions to this story, as we encounter Einstein's astounding vision of gravity as the curvature of space-time and arrive at the breathtakingly beautiful field equations. Einstein's legacy is reviewed in the most advanced frontiers of physics today - black holes, gravitational waves, the accelerating universe and string theory.
Introduction to General Relativity and Cosmology gives undergraduate students an overview of the fundamental ideas behind the geometric theory of gravitation and spacetime. Through pointers on how to modify and generalise Einstein's theory to enhance understanding, it provides a link between standard textbook content and current research in the field.Chapters present complicated material practically and concisely, initially dealing with the mathematical foundations of the theory of relativity, in particular differential geometry. This is followed by a discussion of the Einstein field equations and their various properties. Also given is analysis of the important Schwarzschild solutions, followed by application of general relativity to cosmology. Questions with fully worked answers are provided at the end of each chapter to aid comprehension and guide learning. This pared down textbook is specifically designed for new students looking for a workable, simple presentation of some of the key theories in modern physics and mathematics.
Every document in "The Collected Papers of Albert Einstein" appears in the language in which it was written, and supplementary paperback volumes present the English translations if all non-English materials. For those desiring a supplement to Volume 5, for instance, this paperback includes translations of correspondence that give a much richer picture of Einstein in his twenties and thirties than we ever had. In addition to illuminating the personal aspects of his life, the letters document his scientific activity: his concentration for years on the unfathomable problems of quanta and radiation, his extensive knowledge of experimental physics, his many fruitful interactions with experimentalists, and finally his long struggle to generalize the 1905 theory of relativity to include gravitation and accelerated frames of reference. This paperback translation does not include notes or annotation of the documentary volume and is not intended for use without the original language documentary edition, which provides the extensive editorial commentary necessary for a full historical and scientific understanding of the documents.
It is commonly assumed that if the Sun suddenly turned into a black hole, it would suck Earth and the rest of the planets into oblivion. Yet, as prominent author and astrophysicist Jeffrey Bennett points out, black holes don't suck. With that simple idea in mind, Bennett begins an entertaining introduction to Einstein's theories of relativity, describing the amazing phenomena readers would actually experience if they took a trip to a black hole. The theory of relativity reveals the speed of light as the cosmic speed limit, the mind-bending ideas of time dilation and curvature of spacetime, and what may be the most famous equation in history: E = mc2. Indeed, the theory of relativity shapes much of our modern understanding of the universe. It is not "just a theory"-every major prediction of relativity has been tested to exquisite precision, and its practical applications include the Global Positioning System (GPS). Amply illustrated and written in clear, accessible prose, Bennett's book proves anyone can grasp the basics of Einstein's ideas. His intuitive, nonmathematical approach gives a wide audience its first real taste of how relativity works and why it is so important to science and the way we view ourselves as human beings.
Numerical relativity has emerged as the key tool to model gravitational waves - recently detected for the first time - that are emitted when black holes or neutron stars collide. This book provides a pedagogical, accessible, and concise introduction to the subject. Relying heavily on analogies with Newtonian gravity, scalar fields and electromagnetic fields, it introduces key concepts of numerical relativity in a context familiar to readers without prior expertise in general relativity. Readers can explore these concepts by working through numerous exercises, and can see them 'in action' by experimenting with the accompanying Python sample codes, and so develop familiarity with many techniques commonly employed by publicly available numerical relativity codes. This is an attractive, student-friendly resource for short courses on numerical relativity, as well as providing supplementary reading for courses on general relativity and computational physics.
A Physics Today Best Book of the Year A Forbes "For the Physics and Astronomy Lover in Your Life" Selection "Succinct, accessible, and remarkably timely... This book is a rare find." -Physics Today "Belongs on the shelf of anyone interested in learning the scientific, historical, and personal stories behind some of the most incredible scientific advances of the 21st century." -Forbes The detection of gravitational waves has already been called the scientific breakthrough of the century. Einstein predicted these tiny ripples in the fabric of spacetime over a hundred years ago, but they were only recently perceived directly for the first time. Ripples in Spacetime is an engaging account of the international effort to complete Einstein's project, capture his elusive ripples, and launch an era of gravitational-wave astronomy that promises to explain, more vividly than ever before, our universe's structure and origin. "Schilling's deliciously nerdy grand tour takes us through compelling backstory, current research, and future expectations." -Nature "A lively and readable account... Schilling underlines that this discovery is the opening of a new window on the universe, the beginning of a new branch of science." -Graham Farmelo, The Guardian
Have you ever wondered about Time: what it is or how to discuss it? If you have, then you may have been bewildered by the many different views and opinions in many diverse fields to be found, such as physics, mathematics, philosophy, religion, history, and science fiction novels and films. This book will help you unravel fact from fiction. It provides a broad survey of many of these views, these images of time, covering historical, cultural, philosophical, biological, mathematical and physical images of time, including classical and quantum mechanics, special and general relativity and cosmology. This book gives you more than just a review of such images. It provides the reader a basis for judging the scientific soundness of these various images. It develops the reader's critical ability to distinguish Images of Time in terms of its contextual completeness. Differentiating between metaphysical images (which cannot be scientifically validated) and those that could, in principle, be put to empirical test. Showing that mathematical and classical mechanical images are more complete, and genuine quantum mechanics based images have the greatest degree of contextual completeness. Through the use of a simple algorithm, the reader can decide the classification of any of the images of time discussed in this book. These distinctions are of particular importance in this day and age, when we are flooded by a plethora of competing Images of Time. Many of these have no scientific basis or empirical support or content. This book will be of value not only to philosophers, scientists and students, but also to the general reader interested in this fundamental topic, because it introduces a method of distinguishing between science fiction and science fact.
CHOSEN AS A BOOK OF THE YEAR BY THE GUARDIAN, DAILY TELEGRAPH, NEW STATESMAN AND BBC SCIENCE FOCUS 'An intimate, unique, and inspiring perspective on the life and work of one of the greatest minds of our time. Filled with insight, humour, and never-before-told stories, it's a view of Stephen Hawking that few have seen and all will appreciate' James Clear, author of Atomic Habits An icon of the last fifty years, Stephen Hawking seems to encapsulate genius: not since Albert Einstein has a scientific figure held such a position in popular consciousness. In this enthralling memoir, writer and physicist Leonard Mlodinow tells the story of his friend and their collaboration, offering an intimate account of this giant of science. The two met in 2003, when Stephen asked Leonard if he would consider writing a book with him, the follow up to the bestselling A Brief History of Time. As they spent years working on a second book, The Grand Design, they forged a deep connection and Leonard gained a much better understanding of Stephen's daily life and struggles -- as well as his compassion and good humour. Together they obsessed over the perfect sentence, debated the physics, and occasionally punted on Cambridge's waterways with champagne and strawberries. In time, Leonard was able to finish Stephen's jokes, chide his sporadic mischief, and learn how the hardships of his illness helped forge that unique perspective on the universe. By weaving together their shared story with a clear-sighted portrayal of Hawking's scientific achievements, Mlodinow creates a beautiful portrait of Stephen Hawking as a brilliant, impish and generous man whose life was not only exceptional but also genuinely inspiring.
This advanced undergraduate text introduces Einstein's general theory of relativity. The topics covered include geometric formulation of special relativity, the principle of equivalence, Einstein's field equation and its spherical-symmetric solution, as well as cosmology. An emphasis is placed on physical examples and simple applications without the full tensor apparatus. It begins by examining the physics of the equivalence principle and looks at how it inspired Einstein's idea of curved spacetime as the gravitational field. At a more mathematically accessible level, it provides a metric description of a warped space, allowing the reader to study many interesting phenomena such as gravitational time dilation, GPS operation, light deflection, precession of Mercury's perihelion, and black holes. Numerous modern topics in cosmology are discussed from primordial inflation and cosmic microwave background to the dark energy that propels an accelerating universe. Building on Cheng's previous book, 'Relativity, Gravitation and Cosmology: A Basic Introduction', this text has been tailored to the advanced student. It concentrates on the core elements of the subject making it suitable for a one-semester course at the undergraduate level. It can also serve as an accessible introduction of general relativity and cosmology for those readers who want to study the subject on their own. The proper tensor formulation of Einstein's field equation is presented in an appendix chapter for those wishing to glimpse further at the mathematical details.
'Extraordinary' Leonard Susskind 'A rare event' Sean Carroll _____ When leading theoretical physicist Professor Michael Dine was asked where you could find an accessible and authoritative book that would teach you about the Big Bang, Dark Matter, the Higgs boson and the cutting edge of physics now, he had nothing he could recommend. So he wrote it himself. In This Way to the Universe, Dine takes us on a fascinating tour through the history of modern physics - from Newtonian mechanics to quantum, from particle to nuclear physics - delving into the wonders of our universe at its largest, smallest, and within our daily lives. If you are looking for the one book to help you understand physics, written in language anyone can follow, this is it. _____ 'A tour de force of literally all of fundamental physics' BBC Sky at Night magazine 'Everything you wanted to know about physics but were afraid to ask' Priyamvada Natarajan, author of Mapping the Heavens
What does the passage of time consist in? There are some suggestive metaphors. aEvents approach us, pass us, and recede from us, like sticks and leaves floating on the river of time.a aWe are moving from the past into the future, like ships sailing into an unknown ocean.a There is surely something right and deep about these metaphors. But how close are they to the literal truth? In this book Bradford Skow argues that they are far from the literal truth. Skowas argument takes the form of a defense of the block universe theory of time, a theory that, in many ways, treats time as a dimension of reality that closely resembles the three dimensions of space. Opposed to the block universe theory of time are theories that take the metaphors more seriously: presentism, the moving spotlight theory, the growing block theory, and the branching time theory. These are theories of arobusta passage of time, or aobjective becoming.a Skow argues that the best of these theories, the block universe theoryas most worthy opponent, is the moving spotlight theory, the theory that says that apresentnessa moves along the series of times from the past into the future. Skow defends the moving spotlight theory against the objection that it is inconsistent, and the objection that it cannot answer the question of how fast time passes. He also defends it against the objection that it is incompatible with Einsteinas theory of relativity. Skow proposes several ways in which the moving spotlight theory may be made compatible with the theory of relativity. Still, this book is ultimately a defense of the block universe theory, not of the moving spotlight theory. Skow holds that the best arguments against the block universe theory, and for the moving spotlight theory, start from the idea that, somehow, the passage of time is given to us in experience. Skow discusses several different arguments that start from this idea, and argues that they all fail. |
You may like...
Business Intelligence and Agile…
Asim Abdel Rahman El Sheikh, Mouhib Alnoukari
Hardcover
R4,710
Discovery Miles 47 100
Regularization, Optimization, Kernels…
Johan A.K. Suykens, Marco Signoretto, …
Hardcover
R3,107
Discovery Miles 31 070
Research Anthology on Machine Learning…
Information R Management Association
Hardcover
R16,077
Discovery Miles 160 770
Several Complex Variables and Banach…
Herbert Alexander, John Wermer
Hardcover
R1,431
Discovery Miles 14 310
Schur Functions, Operator Colligations…
Daniel Alpay, Etc, …
Hardcover
R2,395
Discovery Miles 23 950
Management and Applications of Complex…
G. Rzevski, S. Syngellakis
Hardcover
R2,290
Discovery Miles 22 900
|