![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Relativity physics > General
This book shows how our new-found ability to observe the Earth from "the necessary distance" has wide and profound cultural and ethical implications. First of all, it is the outcome of speculations and investigations of human beings in relation to their home planet carried out over millennia. In particular, it reveals a split between the ancient idea of the Earth as nurturing mother and the more recent conception of the Earth as a neutral resource able to be infinitely exploited by humankind. The 1968 Earthrise photograph, showing the beauty and fragility of the Earth, helped spark a worldwide environmental movement; now the comprehensive coverage of global change provided by satellites has the potential to convince us beyond reasonable doubt of the huge alterations being wrought upon the Earth and its climate system as a result of human actions, and of the need to act more responsibly.
This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as "loop quantum gravity", which gives rise to a quantization of space. In the second part the author introduces supersymmetry and its consequences. The generation of superfields is represented in detail. Supersymmetric generalizations of Maxwell's Theory as well as of Yang-Mills field theory, and of the standard model are worked out. Spontaneous symmetry breaking, improvement of the divergence problem in supersymmetric field theory, and its role in the hierarchy problem are covered. The unification of the fundamental constants in a supersymmetric version of the standard model are then studied. Geometrical aspects necessary to study supergravity are developed culminating in the derivation of its full action. The third part introduces string theory and the analysis of the spectra of the mass (squared) operator associated with the oscillating strings. The properties of the underlying fields, associated with massless particles, encountered in string theory are studied in some detail. Elements of compactification, duality and D-branes are given, as well of the generation of vertices and interactions of strings. In the final sections, the author shows how to recover GR and the Yang-Mills field Theory from string theory.
This book explores a wide range of topics relating to scientific and religious learning in the work of Bishop Robert Grosseteste (c. 1168-1253) and does so from various perspectives, including those of a twenty-first century scientists, historians, and philosophers as well as several medievalists. In particular, it aims to contribute to our understanding of where to place Grosseteste in the history of science (against the background of the famous claim by A.C. Crombie that Grosseteste introduced what we now might call "experimental science") and to demonstrate that the polymathic world of the medieval scholar, who recognized no dichotomy in the pursuit of scientific and philosophical/theological understanding, has much to teach those of us in the modern world who wrestle with the vexed question of the relationship between science and religion. The book comprises an edited selection of the best papers presented at the 3rd International Robert Grosseteste Conference (2014) on the theme of scientific and religious learning, especially in the work of Grosseteste.
This thesis presents the state of the art in the study of Bondi-Metzner-Sachs (BMS) symmetry and its applications in the simplified setting of three dimensions. It focuses on presenting all the background material in a pedagogical and self-contained manner to enable readers to fully appreciate the original results that have been obtained while learning a number of fundamental concepts in the field along the way. This makes it a highly rewarding read and a perfect starting point for anybody with a serious interest in the four-dimensional problem.
This book describes the endeavour to relate the particle spectrum with representations of operational electroweak spacetime, in analogy to the atomic spectrum as characterizing representations of hyperbolic space. The spectrum of hyperbolic position space explains the properties of the nonrelativistic atoms; the spectrum of electroweak spacetime is hoped to explain those of the basic interactions and elementary particles. In this book, the theory of operational symmetries is developed from the numbers, from Plato's and Kepler's symmetries over the simple Lie groups to their applications in nonrelativistic, special relativistic and general relativistic quantum theories with the atomic spectrum for hyperbolic position and, in first attempts, the particle spectrum for electroweak spacetime. The standard model of elementary particles and interactions is characterized by a symmetry group. In general, as initiated by Weyl and stressed by Heisenberg, quantum theory can be built as a theory of operation groups and their unitary representations. In such a framework, time, position and spacetime is modeled by equivalence classes of symmetry groups. For a unification on this road, the quest is not for a final theory with a basic equation for basic particles, but for the basic operation group and its representations.
This book evaluates and suggests potentially critical improvements to causal set theory, one of the best-motivated approaches to the outstanding problems of fundamental physics. Spacetime structure is of central importance to physics beyond general relativity and the standard model. The causal metric hypothesis treats causal relations as the basis of this structure. The book develops the consequences of this hypothesis under the assumption of a fundamental scale, with smooth spacetime geometry viewed as emergent. This approach resembles causal set theory, but differs in important ways; for example, the relative viewpoint, emphasizing relations between pairs of events, and relationships between pairs of histories, is central. The book culminates in a dynamical law for quantum spacetime, derived via generalized path summation.
This thesis describes one of the most precise experimental tests of Lorentz symmetry in electrodynamics by light-speed anisotropy measurement with an asymmetric optical ring cavity. The author aims to answer the fundamental, hypothetical debate on Lorentz symmetry in the Universe. He concludes that the symmetry is protected within an error of 10-15, which means providing one of the most stringent upper limits on the violation of the Lorentz symmetry in the framework of the Standard Model Extension. It introduces the following three keys which play an important role in achieving high-precision measurement: (1) a high-index element (silicon) interpolated into part of the light paths in the optical ring cavity, which improves sensitivity to the violation of the Lorentz symmetry, (2) double-pass configuration of the interferometer, which suppresses environmental noises, and (3) continuous data acquisition by rotating the optical ring cavity, which makes it possible to search for higher-order violations of Lorentz symmetry. In addition to those well-described keys, a comprehensive summary from theoretical formulations to experimental design details, data acquisition, and data analysis helps the reader follow up the experiments precisely.
This thesis reports on the search for dark matter in data taken with the ATLAS detector at CERN's Large Hadron Collider (LHC). The identification of dark matter and the determination of its properties are among the highest priorities in elementary particle physics and cosmology. The most likely candidate, a weakly interacting massive particle, could be produced in the high energy proton-proton collisions at the LHC. The analysis presented here is unique in looking for dark matter produced together with a Higgs boson that decays into its dominant decay mode, a pair of b quarks. If dark matter were seen in this mode, we would learn directly about the production mechanism because of the presence of the Higgs boson. This thesis develops the search technique and presents the most stringent production limit to date.
It is commonly assumed that if the Sun suddenly turned into a black hole, it would suck Earth and the rest of the planets into oblivion. Yet, as prominent author and astrophysicist Jeffrey Bennett points out, black holes don't suck. With that simple idea in mind, Bennett begins an entertaining introduction to Einstein's theories of relativity, describing the amazing phenomena readers would actually experience if they took a trip to a black hole. The theory of relativity reveals the speed of light as the cosmic speed limit, the mind-bending ideas of time dilation and curvature of spacetime, and what may be the most famous equation in history: E = mc2. Indeed, the theory of relativity shapes much of our modern understanding of the universe. It is not "just a theory"-every major prediction of relativity has been tested to exquisite precision, and its practical applications include the Global Positioning System (GPS). Amply illustrated and written in clear, accessible prose, Bennett's book proves anyone can grasp the basics of Einstein's ideas. His intuitive, nonmathematical approach gives a wide audience its first real taste of how relativity works and why it is so important to science and the way we view ourselves as human beings.
The articles included in this Volume represent a broad and highly qualified view on the present state of general relativity, quantum gravity, and their cosmological and astrophysical implications. As such, it may serve as a valuable source of knowledge and inspiration for experts in these fields, as well as an advanced source of information for young researchers. The occasion to gather together so many leading experts in the field was to celebrate the centenary of Einstein's stay in Prague in 1911-1912. It was in fact during his stay in Prague that Einstein started in earnest to develop his ideas about general relativity that fully developed in his paper in 1915. Approaching soon the centenary of his famous paper, this volume offers a precious overview of the path done by the scientific community in this intriguing and vibrant field in the last century, defining the challenges of the next 100 years. The content is divided into four broad parts: (i) Gravity and Prague, (ii) Classical General Relativity, (iii) Cosmology and Quantum Gravity, and (iv) Numerical Relativity and Relativistic Astrophysics.
This book offers a detailed and stimulating account of the Lagrangian, or variational, approach to general relativity and beyond. The approach more usually adopted when describing general relativity is to introduce the required concepts of differential geometry and derive the field and geodesic equations from purely geometrical properties. Demonstration of the physical meaning then requires the weak field approximation of these equations to recover their Newtonian counterparts. The potential downside of this approach is that it tends to suit the mathematical mind and requires the physicist to study and work in a completely unfamiliar environment. In contrast, the approach to general relativity described in this book will be especially suited to physics students. After an introduction to field theories and the variational approach, individual sections focus on the variational approach in relation to special relativity, general relativity, and alternative theories of gravity. Throughout the text, solved exercises and examples are presented. The book will meet the needs of both students specializing in theoretical physics and those seeking a better understanding of particular aspects of the subject.
If you have ever wanted to understand the basic principles of astronomy and celestial movements, you should read this book. Using pictures of the sky observed from different places on Earth, as well as drawings of ancient astronomical methods and tools, Prof. Sun Kwok tells this story in an entertaining and fascinating way. Since the beginning of human civilization, people have wondered about the structure of the cosmos and our place in the Universe. More than 2,000 years ago, our ancestors knew that the seasons were unequal, the Earth was an unattached object floating in space, and stars existed that they could not see. From celestial observations, they concluded that the Earth was round. Using simple tools and mathematics, ancient astronomers accurately determined the sizes of the Earth and Moon, the distance to the Moon, and the lengths of the months and year. With a clever device called the armillary sphere, Greek astronomers could predict the times of sunrise and sunset on any day of the year, at any place on Earth. They developed sophisticated mathematical models to forecast Mars' motions hundreds of years into the future. Find out how ancient observers achieved these remarkable feats. With minimal use of mathematics, this book retraces the footsteps of our ancestors, explains their intellectual journeys in simple terms, and explores the philosophical implications of these discoveries.
This book presents the Projective approach to de Sitter Relativity. It traces the development of renewed interest in models of the universe at constant positive curvature such as "vacuum" geometry. The De Sitter Theory of Relativity, formulated in 1917 with Willem De Sitter's solution of the Einstein equations, was used in different fields during the 1950s and 1960s, in the work of H. Bacry, J.M. LevyLeblond and F.Gursey, to name some important contributors. From the 1960s to 1980s, L. Fantappie and G. Arcidiacono provided an elegant group approach to the De Sitter universe putting the basis for special and general projective relativity. Today such suggestions flow into a unitary scenario, and this way the De Sitter Relativity is no more a "missing opportunity" (F. Dyson, 1972), but has a central role in theoretical physics. In this volume a systematic presentation is given of the De Sitter Projective relativity, with the recent developments in projective general relativity and quantum cosmology.
The aim of this book (and subsequent volumes issued annually) is to provide an annual astronomy review suitable for the popular science level reader. It will be published every year in September in a format suitable for an appeal to the Christmas market. The book will cover all major astronomical news on topics beyond the Solar System and place them in the context of the longer term goals that astronomers and astrophysicists around the world are aiming for. The target is to capture the excitement of modern astronomical research enabling reader to stay up-to-date with its rapid pace and development.
Written by the creator of the modern theory of random tensors, this book is the first self-contained introductory text to this rapidly developing theory. Starting from notions familiar to the average researcher or PhD student in mathematical or theoretical physics, the book presents in detail the theory and its applications to physics. The recent detections of the Higgs boson at the LHC and gravitational waves at LIGO mark new milestones in Physics confirming long standing predictions of Quantum Field Theory and General Relativity. These two experimental results only reinforce today the need to find an underlying common framework of the two: the elusive theory of Quantum Gravity. Over the past thirty years, several alternatives have been proposed as theories of Quantum Gravity, chief among them String Theory. While these theories are yet to be tested experimentally, key lessons have already been learned. Whatever the theory of Quantum Gravity may be, it must incorporate random geometry in one form or another. This book introduces a framework for studying random geometries in any dimensions. Building on the resounding success of random matrices as theories of random two dimensional surfaces, random tensors are their natural generalization to theories of random geometry in arbitrary dimension. This book shows that many of the celebrated results in random matrices, most notably 't Hooft's 1/N expansion, can be generalized to higher dimensions. It provides a complete and self-contained derivation of the key results on random tensors.
This book provides a remarkable and complete survey of important questions at the interface between theoretical particle physics and cosmology. After discussing the theoretical and experimental physics revolution that led to the rise of the Standard Model in the past century, the author reviews all the major open puzzles, among them the hierarchy problem, the small value of the cosmological constant, the matter-antimatter asymmetry, and the dark matter enigma, including the state-of-the-art regarding proposed solutions. Also addressed are the rapidly expanding fields of thermal dark matter, cosmological first-order phase transitions and gravitational-wave signatures. In addition, the book presents the original and interdisciplinary PhD research work of the author relating to Weakly-Interacting-Massive-Particles around the TeV scale, which are among the most studied dark matter candidates. Motivated by the absence of experimental evidence for such particles, this thesis explores the possibility that dark matter is much heavier than what is conventionally assumed.
The exploration of the first billion years of the history of the Universe represents one of the great challenges of contemporary astrophysics. During this time, the first structures start to form the first stars, galaxies, and possibly also soon the first quasars. At the same time, light comes to the dark, neutral Universe. This book contains the worked out lectures given at the 36th Saas-Fee Advanced Course "First Light in the Universe" by three eminent scientists in the field.
Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only reviews the progress made since the early days of pulsar astronomy, but especially focuses on questions such as: "What have we learned about the subject and how did we learn it?", "What are the most important open questions in this area?" and "What new tools, telescopes, observations, and calculations are needed to answer these questions?". All authors who have contributed to this book have devoted a significant part of their scientific careers to exploring the nature of neutron stars and understanding pulsars. Everyone has paid special attention to writing educational comprehensive review articles with the needs of beginners, students and young scientists as potential readers in mind. This book will be a valuable source of information for these groups.
This book has been prepared to celebrate the 65th birthday of Gabriele Veneziano and his retirement from CERN in September 2007. This reti- ment certainly will not mark the end of his extraordinary scienti?c career (in particular, he will remain on the permanent sta? of the Coll` ege de France in Paris), but we believe that this important step deserves a special celebration, and an appropriate recognition of his monumental contribution to physics. Our initial idea of preparing a volume of Selected papers of Professor Gabriele Veneziano, possibly with some added commentary, was dismissed when we realized that this format of book, very popular in former times, has become redundant today because of the full "digitalization" of all important physical journals, and their availability online in the electronic archives. We have thus preferred an alternative (and unconventional, but probably more e?ective) form of celebrating Gabriele's birthday: a collection of new papers written by his main collaborators and friends on the various aspects of th- retical physics that have been the object of his research work, during his long and fruitful career.
Modern comprehensive introduction and overview of the physics of White Dwarfs, Neutron Stars and Black Holes, including all relevant observations. Contains a basic introduction to General Relativity, including the modern 3+1 split of spacetime and of Einstein's equations. The split is used for the first time to derive the structure equations for rapidly rotating neutron stars and Black Holes. Detailed discussions and derivations of current theoretical results. In particular also the most recent equations of state for neutron star matter are explained. Topics , such as colour superconductivity are discussed and used for modelling. A book for graduate students and researchers. Contains exercises and some solutions.
This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semi group evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. The full gauge invariance of the Stueckelberg-Schroedinger equation results in a 5D generalization of the usual gauge theories. A description of this structure and some of its consequences for both Abelian and non-Abelian fields are discussed. A review of the basic foundations of relativistic classical and quantum statistical mechanics is also given. The Bekenstein-Sanders construction for imbedding Milgrom's theory of modified spacetime structure into general relativity as an alternative to dark matter is also studied.
This book offers review chapters written by invited speakers of the 3rd Session of the Sant Cugat Forum on Astrophysics - Gravitational Waves Astrophysics. All chapters have been peer reviewed. The book goes beyond normal conference proceedings in that it provides a wide panorama of the astrophysics of gravitational waves and serves as a reference work for researchers in the field. |
You may like...
Advances in Quantum Monte Carlo
Shigenori Tanaka, Stuart M. Rothstein, …
Hardcover
R5,469
Discovery Miles 54 690
Intrinsic Time Geometrodynamics: At One…
Chopin Soo, Hoi-lai Yu
Hardcover
R2,378
Discovery Miles 23 780
Unified Non-Local Relativistic Theory of…
Boris V Alexeev
Paperback
The Evolutionary Cosmos - Outside-In…
Richard Westberg, Cal Orey
Hardcover
R1,032
Discovery Miles 10 320
|