![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Relativity physics > General
This book explains and develops the Dirac equation in the context of general relativistic quantum mechanics in a range of spacetime dimensions. It clarifies the subject by carefully pointing out the various conventions used and explaining how they are related to each other. The prerequisites are familiarity with general relativity and an exposure to the Dirac equation at the level of special relativistic quantum mechanics, but a review of this latter topic is given in the first chapter as a reference and framework for the physical interpretations that follow. Worked examples and exercises with solutions are provided. Appendices include reviews of topics used in the body of the text. This book should benefit researchers and graduate students in general relativity and in condensed matter.
This book is the first to provide a comprehensive, readily understandable report on the European Space Agency's Gaia mission that will meet the needs of a general audience. It takes the reader on an exciting journey of discovery, explaining how such a scientific satellite is made, presenting the scientific results available from Gaia to date, and examining how the collected data will be used and their likely scientific consequences. The Gaia mission will provide a complete and high-precision map of the positions, distances, and motions of the stars in our galaxy. It will revolutionize our knowledge on the origin and evolution of the Milky Way, on the effects of mysterious dark matter, and on the birth and evolution of stars and extrasolar planets. The Gaia satellite was launched in December 2013 and has a foreseen operational lifetime of five to six years, culminating in a final stellar catalogue in the early 2020s. This book will appeal to all who have an interest in the mission and the profound impact that it will have on astronomy.
Eleven most important original papers on special and general theories. Seven by Einstein, two by Lorentz, one each by Minkowski and Weyl.
Based on Prof. Lust's Masters course at the University of Munich, this book begins with a short introduction to general relativity. It then presents black hole solutions, and discusses Penrose diagrams, black hole thermodynamics and entropy, the Unruh effect, Hawking radiation, the black hole information problem, black holes in supergravity and string theory, the black hole microstate counting in string theory, asymptotic symmetries in general relativity, and a particular quantum model for black holes. The book offers an up-to-date summary of all the pertinent questions in this highly active field of physics, and is ideal reading for graduate students and young researchers.
These lecture notes are intended for starting PhD students in theoretical physics who have a working knowledge of General Relativity. The four topics covered are: Surface charges as conserved quantities in theories of gravity; Classical and holographic features of three-dimensional Einstein gravity; Asymptotically flat spacetimes in four dimensions: BMS group and memory effects; The Kerr black hole: properties at extremality and quasi-normal mode ringing. Each topic starts with historical foundations and points to a few modern research directions.
A Physics Today Best Book of the Year A Forbes "For the Physics and Astronomy Lover in Your Life" Selection "Succinct, accessible, and remarkably timely... This book is a rare find." -Physics Today "Belongs on the shelf of anyone interested in learning the scientific, historical, and personal stories behind some of the most incredible scientific advances of the 21st century." -Forbes The detection of gravitational waves has already been called the scientific breakthrough of the century. Einstein predicted these tiny ripples in the fabric of spacetime over a hundred years ago, but they were only recently perceived directly for the first time. Ripples in Spacetime is an engaging account of the international effort to complete Einstein's project, capture his elusive ripples, and launch an era of gravitational-wave astronomy that promises to explain, more vividly than ever before, our universe's structure and origin. "Schilling's deliciously nerdy grand tour takes us through compelling backstory, current research, and future expectations." -Nature "A lively and readable account... Schilling underlines that this discovery is the opening of a new window on the universe, the beginning of a new branch of science." -Graham Farmelo, The Guardian
This book provides a remarkable and complete survey of important questions at the interface between theoretical particle physics and cosmology. After discussing the theoretical and experimental physics revolution that led to the rise of the Standard Model in the past century, the author reviews all the major open puzzles, among them the hierarchy problem, the small value of the cosmological constant, the matter-antimatter asymmetry, and the dark matter enigma, including the state-of-the-art regarding proposed solutions. Also addressed are the rapidly expanding fields of thermal dark matter, cosmological first-order phase transitions and gravitational-wave signatures. In addition, the book presents the original and interdisciplinary PhD research work of the author relating to Weakly-Interacting-Massive-Particles around the TeV scale, which are among the most studied dark matter candidates. Motivated by the absence of experimental evidence for such particles, this thesis explores the possibility that dark matter is much heavier than what is conventionally assumed.
This Brief presents in a self-contained, non-technical and illustrative fashion the state-of-the-art results and techniques for the dynamics of extremal black holes. Extremal black holes are, roughly speaking, either maximally rotating or maximally charged. Astronomical observations suggest that near-extremal (stellar or supermassive) black holes are ubiquitous in the universe. The book presents various recently discovered characteristic phenomena (such as the horizon instability) that have enhanced our understanding of the dynamics of extremal black holes. The topics should be of interest to pure mathematicians, theoretical physicists and astronomers. This book provides common ground for communication between these scientific communities.
This book, designed as a tool for young researchers and graduate students, reviews the main open problems and research lines in various fields of astroparticle physics: cosmic rays, gamma rays, neutrinos, cosmology, and gravitational physics. The opening section discusses cosmic rays of both galactic and extragalactic origin, examining experimental results, theoretical models, and possible future developments. The basics of gamma-ray astronomy are then described, including the detection methods and techniques. Galactic and extragalactic aspects of the field are addressed in the light of recent discoveries with space-borne and ground-based detectors. The review of neutrinos outlines the status of the investigations of neutrino radiation and brings together relevant formulae, estimations, and background information. Three complementary issues in cosmology are examined: observable predictions of inflation in the early universe, effects of dark energy/modified gravity in the large-scale structure of the universe, and neutrinos in cosmology and large-scale structures. The closing section on gravitational physics reviews issues relating to quantum gravity, atomic precision tests, space-based experiments, the strong field regime, gravitational waves, multi-messengers, and alternative theories of gravity.
This thesis sheds valuable new light on the second-order cosmological perturbation theory, extensively discussing it in the context of cosmic microwave background (CMB) fluctuations. It explores the observational consequences of the second-order vector mode, and addresses magnetic field generation and the weak lensing signatures, which are key phenomena of the vector mode. The author demonstrates that the second-order vector mode, which never appears at the linear-order level, naturally arises from the non-linear coupling of the first-order scalar modes. This leads to the remarkable statement that the vector-order mode clearly contributes to the generation of cosmological magnetic fields. Moreover, the weak lensing observations are shown to be accessible to the vector mode. On the basis of ongoing and forthcoming observations, the thesis concludes that the second-order vector mode is detectable.
This thesis focuses on understanding the growth and formation mechanism of supermassive black holes (SMBHs), an issue it addresses by investigating the dense interstellar medium that is assumed to be a crucial component of the fuel for SMBHs. The thesis also offers unique guidance on using the Atacama Large Millimeter/submillimeter Array (ALMA) in active galactic nuclei (AGN) research. The author presents the three major findings regarding SMBH formation and growth: (1) The development of a new diagnostic method for the energy sources in galaxies based on submillimeter spectroscopy, which allows identification of accreting SMBHs even in obscured environments, (2) the discovery that the circumnuclear dense gas disk (CND), with a typical size of a few tens of parsecs, which plays a crucial role in governing the growth of SMBHs, and (3) the discovery that the mass transfer budget from the CND to the central SMBHs can be quantitatively understood with a theoretical model incorporating the circumnuclear starburst as a driver of mass transfer. The thesis skillfully reviews these three findings, which have greatly improved our understanding of the growth mechanism of SMBHs.
Gamma-ray bursts (GRBs) are the most luminous explosions in the universe, which within seconds release energy comparable to what the Sun releases in its entire lifetime. The field of GRBs has developed rapidly and matured over the past decades. Written by a leading researcher, this text presents a thorough treatment of every aspect of the physics of GRBs. It starts with an overview of the field and an introduction to GRB phenomenology. After laying out the basics of relativity, relativistic shocks, and leptonic and hadronic radiation processes, the volume covers all topics related to GRBs, including a general theoretical framework, afterglow and prompt emission models, progenitor, central engine, multi-messenger aspects (cosmic rays, neutrinos, and gravitational waves), cosmological connections, and broader impacts on fundamental physics and astrobiology. It is suitable for advanced undergraduates, graduate students, and experienced researchers in the field of GRBs and high-energy astrophysics in general.
In contrast to other introductions to special relativity, this one aims at a conceptually clear presentation of the theory. While not shying away from the proper mathematics, an emphasis is placed on an easy understanding of the underlying concepts, rather than technical calulcations only. With an entertaining writing style, comic-like illustrations and instructive problems, this textbook makes the entry to special relativity a lot easier.
This introduction to automorphic forms on adelic groups G(A) emphasises the role of representation theory. The exposition is driven by examples, and collects and extends many results scattered throughout the literature, in particular the Langlands constant term formula for Eisenstein series on G(A) as well as the Casselman-Shalika formula for the p-adic spherical Whittaker function. This book also covers more advanced topics such as spherical Hecke algebras and automorphic L-functions. Many of these mathematical results have natural interpretations in string theory, and so some basic concepts of string theory are introduced with an emphasis on connections with automorphic forms. Throughout the book special attention is paid to small automorphic representations, which are of particular importance in string theory but are also of independent mathematical interest. Numerous open questions and conjectures, partially motivated by physics, are included to prompt the reader's own research.
Spacetime and Geometry is an introductory textbook on general relativity, specifically aimed at students. Using a lucid style, Carroll first covers the foundations of the theory and mathematical formalism, providing an approachable introduction to what can often be an intimidating subject. Three major applications of general relativity are then discussed: black holes, perturbation theory and gravitational waves, and cosmology. Students will learn the origin of how spacetime curves (the Einstein equation) and how matter moves through it (the geodesic equation). They will learn what black holes really are, how gravitational waves are generated and detected, and the modern view of the expansion of the universe. A brief introduction to quantum field theory in curved spacetime is also included. A student familiar with this book will be ready to tackle research-level problems in gravitational physics.
Deep within galaxies like the Milky Way, astronomers have found a fascinating legacy of Einstein's general theory of relativity: supermassive black holes. Connected to the evolution of the galaxies that contain these black holes, galactic nuclei are the sites of uniquely energetic events, including quasars, stellar tidal disruptions, and the generation of gravitational waves. This textbook is the first comprehensive introduction to dynamical processes occurring in the vicinity of supermassive black holes in their galactic environment. Filling a critical gap, it is an authoritative resource for astrophysics and physics graduate students, and researchers focusing on galactic nuclei, the astrophysics of massive black holes, galactic dynamics, and gravitational wave detection. It is an ideal text for an advanced graduate-level course on galactic nuclei and as supplementary reading in graduate-level courses on high-energy astrophysics and galactic dynamics. David Merritt summarizes the theoretical work of the last three decades on the evolution of galactic nuclei, the formation of massive black holes, and the interaction between black holes and stars. He explores in depth such important topics as observations of galactic nuclei, dynamical models, weighing black holes, motion near supermassive black holes, evolution of nuclei due to gravitational encounters, loss cone theory, and binary supermassive black holes. Self-contained and up-to-date, the textbook includes a summary of the current literature and previously unpublished work by the author. For researchers working on active galactic nuclei, galaxy evolution, and the generation of gravitational waves, this book will be an essential resource.
This volume compiles notes from four mini courses given at the summer school on asymptotic analysis in general relativity, held at the Institut Fourier in Grenoble, France. It contains an up-to-date panorama of modern techniques in the asymptotic analysis of classical and quantum fields in general relativity. Accessible to graduate students, these notes gather results that were not previously available in textbooks or monographs and will be of wider interest to researchers in general relativity. The topics of these mini courses are: the geometry of black hole spacetimes; an introduction to quantum field theory on curved spacetimes; conformal geometry and tractor calculus; and microlocal analysis for wave propagation.
A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravities, and therefore providing graduates and researchers with an invaluable resource on this important topic in gravitational physics. Including contributions by David Chow, Christopher N. Pope and Ergin Sezgin (chapters 16-19).
The aim of this book (and subsequent volumes issued annually) is to provide an annual astronomy review suitable for the popular science level reader. It will be published every year in September in a format suitable for an appeal to the Christmas market. The book will cover all major astronomical news on topics beyond the Solar System and place them in the context of the longer term goals that astronomers and astrophysicists around the world are aiming for. The target is to capture the excitement of modern astronomical research enabling reader to stay up-to-date with its rapid pace and development.
This book is aimed at theoretical as well as primarily physicists graduate students in field working quantum theory, quantum gravity, theories, gauge to sdme and and, it is not extent, general relativity cosmology. Although aimed at a I that it also be of level, hope in mathematically rigorous may terest to mathematical and mathematicians in physicists working spectral of differential mani geometry, spectral asymptotics on operators, analysis differential and mathematical methods in folds, geometry quantum theory. Thisbook will be considered too abstract some but certainly by physicists, not detailed and most mathematicians. This in completeenoughby means, thatthe material is at the level of particular, presented "physical" So, rigor. there theorems and areno and technicalcalculationsare lemmas, proofs long omitted. I tried detailed to a ofthe basic Instead, give presentation ideas, methodsandresults. Itried makethe to as andcom Also, exposition explicit as the lessabstractandhaveillustratedthe plete possible, methods language and results withsome As is well "onecannot examples. known, cover every in an text. The in this thing," especially introductory approach presented book the lines is a further of the so called along goes (and development) fieldmethod ofDe Witt. As a Ihavenot dealt at background consequence, allwithmanifoldswith boundary, non Laplacetype (ornonminimal) opera Riemann Cartan manifolds well with as as recent tors, developments many and advanced such Ashtekar's more as topics, approach, supergravity, strings, matrix etc. The membranes, interested reader is referred models, M theory tothe literature.
The articles included in this Volume represent a broad and highly qualified view on the present state of general relativity, quantum gravity, and their cosmological and astrophysical implications. As such, it may serve as a valuable source of knowledge and inspiration for experts in these fields, as well as an advanced source of information for young researchers. The occasion to gather together so many leading experts in the field was to celebrate the centenary of Einstein's stay in Prague in 1911-1912. It was in fact during his stay in Prague that Einstein started in earnest to develop his ideas about general relativity that fully developed in his paper in 1915. Approaching soon the centenary of his famous paper, this volume offers a precious overview of the path done by the scientific community in this intriguing and vibrant field in the last century, defining the challenges of the next 100 years. The content is divided into four broad parts: (i) Gravity and Prague, (ii) Classical General Relativity, (iii) Cosmology and Quantum Gravity, and (iv) Numerical Relativity and Relativistic Astrophysics.
This volume presents a selection of 434 letters from and to the Dutch physicist and Nobel Prize winner Hendrik Antoon Lorentz (1853-1928), covering the period from 1883 until a few months before his death in February 1928. The sheer size of the available correspondence (approximately 6000 letters from and to Lorentz) preclude a full publication. The letters included in this volume have been selected according to various criteria, the most important of which is scientific importance. A second criterion has been the availability of letters both from and to Lorentz, so that the reader can follow the exchange between Lorentz and his correspondent. Within such correspondences a few unimportant items, dealing with routine administrative or organizational matters, have been omitted. An exception to the scientific criterion is the exchange of letters between Lorentz and Albert Einstein, Max Planck, Woldemar Voigt, and Wilhelm Wien during World War I: these letters have been included because they shed important light on the disruption of the scientific relations during the war and on the political views of these correspondents as well as of Lorentz. similar reasons the letters exchanged with Einstein and Planck on post-war political issues have been included. Biographical sketch Hendrik Antoon Lorentz was born on July 18, 1853 in the Dutch town of Arnhem. He was the son of a relatively well-to-do owner of a nursery.
This excellent, semi-technical account includes a review of classical physics (origin of space and time measurements, Ptolemaic and Copernican astronomy, laws of motion, inertia, and more) and coverage of Einstein's special and general theories of relativity, discussing the concept of simultaneity, kinematics, Einstein's mechanics and dynamics, and more.
Today, Relativity is becoming an integrated aspect of engineering fields. Its application to the Global Positioning System (GPS), extends in usage from smart watches to the navigation of cars, airplanes (drones) and even autonomous tractors. In rather expensive particle accelerators, physicists are everyday 'playing' with Relativistic Billiards, common to the betatrons of cancer therapy using electrons. Computer programs, such as 'ray tracing' methods, are enhanced to simulate objects in relativistic motion, which now offer us relativistic visualizations of accretion disks around compact, astrophysical objects like Black Holes.Against the backdrop of the applications explained throughout the chapters, this book takes on a practical and intuitive approach in introducing the Lorentz invariance of light propagation and space-time concepts. The book begins with simple mathematics, like the classical Pythagoras formula for energy-momentum 'triangles'. Later, readers will find the intuitive vector calculus reemerging in the expansion of full relativistic expressions. Prepared with instructive diagrams of recent experiments, even the layperson can grasp the essential study of Relativity and marvel at its applications within this book. |
![]() ![]() You may like...
Land, Memory, Reconstruction and Justice…
Anna Bohlin, Ruth Hall, …
Paperback
The Nonlinear Schroedinger Equation
Nalan Antar, Ilkay Bakirtas
Hardcover
R3,347
Discovery Miles 33 470
Absolute Beginner's Guide to PC Upgrades
T.J. Lee, Lee Hudspeth
Paperback
Scientific Data Analysis using Jython…
Sergei V. Chekanov
Hardcover
Computational Statistics Handbook with…
Wendy L. Martinez, Angel R. Martinez
Paperback
R1,660
Discovery Miles 16 600
|