![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Relativity physics > General
This book serves two purposes. The authors present important
aspects of modern research on the mathematical structure of
Einstein's field equations and they show how to extract their
physical content from them by mathematically exact methods. The
essays are devoted to exact solutions and to the Cauchy problem of
the field equations as well as to post-Newtonian approximations
that have direct physical implications. Further topics concern
quantum gravity and optics in gravitational fields.
The foundations are thoroughly developed together with the required mathematical background from differential geometry developed in Part III. The author also discusses the tests of general relativity in detail, including binary pulsars, with much space is devoted to the study of compact objects, especially to neutron stars and to the basic laws of black-hole physics. This well-structured text and reference enables readers to easily navigate through the various sections as best matches their backgrounds and perspectives, whether mathematical, physical or astronomical. Very applications oriented, the text includes very recent results, such as the supermassive black-hole in our galaxy and first double pulsar system
Carl Friedrich von Weizsacker s "Aufbau der Physik," first published in 1985, was intended as an overview of his lifelong concern: an understanding of the unity of physics. That is, the idea of a quantum theory of binary alternatives (the so-called ur-theory), a unified quantum theoretical framework in which spinorial symmetry groups are considered to give rise to the structure of space and time. The book saw numerous reprints, but it was published in German only. The present edition, in English, provides a newly arranged and revised version, in which some original chapters and sections have been deleted, and a new chapter about further insights and results of ur-theoretic research of the late 1980 s and 1990 s, mainly by the work of Thomas Gornitz, has been included, as well as a general introduction to Weizsacker s Philosophy of Physics. Carl Friedrich von Weizsacker also enjoys high esteem by a much broader audience for his socio-cultural, political and religious thoughts and writings. In him the intercultural and interdisciplinary dialogue has found one of its most important proponents: a great thinker who combines the perspectives of science, philosophy, religion and politics with a view towards the challenges as well as the responsibilities of our time."
In July 2006, a major international conference was held at the Perimeter Institute for Theoretical Physics, Canada, to celebrate the career and work of a remarkable man of letters. Abner Shimony, who is well known for his pioneering contributions to foundations of quantum mechanics, is a physicist as well as a philosopher, and is highly respected among the intellectuals of both communities. In line with Shimony's conviction that philosophical investigation is not to be divorced from theoretical and empirical work in the sciences, the conference brought together leading theoretical physicists, experimentalists, as well as philosophers. This book collects twenty-three original essays stemming from the conference, on topics including history and methodology of science, Bell's theorem, probability theory, the uncertainty principle, stochastic modifications of quantum mechanics, and relativity theory. It ends with a transcript of a fascinating discussion between Lee Smolin and Shimony, ranging over the entire spectrum of Shimony's wide-ranging contributions to philosophy, science, and philosophy of science.
Galaxies have a history. This has become clear from recent sky surveys which have shown that distant galaxies, formed early in the life of the Universe, differ from the nearby ones. New observational windows at ultraviolet, infrared and millimetric wavelengths (provided by ROSAT, IRAM, IUE, IRAS, ISO) have revealed that galaxies contain a wealth of components: very hot gas, atomic hydrogen, molecules, dust, dark matter ... A significant advance is expected due to new instruments (VLT, FIRST, XMM) which will allow one to explore the most distant Universe. Three Euroconferences have been planned to punctuate this new epoch in galactic research, bringing together specialists in various fields of Astronomy. The first one, held in Granada (Spain) in May 2000, addressed the observational clues. The second one took place in October 2001 in St Denis de la Reunion (France) and reviewed the basic building blocks and small-scale processes in galaxy evolution. The third one will take place in July 2002 in Kiel (Germany) and will be devoted to the overall modelling of galaxy evolution. This book contains the proceedings of the second conference. It is suitable for researchers and PhD students in Astrophysics. "
It was with pleasure that CAUP became for three days the core to the cloud of star formation experts all over the world. Close to the celebration of its 15th anniversary - therefore still in the early stages of institutional evolution - we are proud of our multiple activities in Astronomy: a productive research centre, classi?ed as "Institution of excellence" within the Portuguese research units, but also an "Institution of Public Utility" as recognised by the Government. Fifteen years ago we choose to play a role not only in research, as expected from any research centre but also in the training of the future astronomers and the promotion of science and scienti?c culture. This choice is clearly stated in our by-laws and also in the multiple activities we have carried out since. Along the years we have organized on a regular basis international Workshops similar to "Cores to Clusters." Sometimes we have chosen to organize int- national conferences of a larger size. On other occasions the choice has been for smaller and more informal discussion meetings. Or even doctoral schools with very different objectives. In common all those meetings have always had, besides the formal registered participants, a group of informal participants, our undergraduate students of Astronomy, so eager to be in touch with the real world.
Galaxies have a history. This has become clear from recent sky surveys, which have shown that distant galaxies, formed early in the life of the Universe, differ from the nearby ones. New observational windows at ultraviolet, infrared and millimetric wavelengths (provided by ROSAT, IRAM, IUE, IRAS, ISO) have revealed that galaxies contain a wealth of components: very hot gas, atomic hydrogen, molecules, dust, dark matter. A significant advance is expected due to new instruments (VLT, FIRST, XMM) which will allow one to explore the most distant Universe. Three Euroconferences have been planned to punctuate this new epoch in galactic research, bringing together specialists in various fields of Astronomy. The first, held in Granada (Spain) in May 2000, addressed the observational clues. The second will take place in October 2001 in St Denis de la Reunion (France) and will review the basic building blocks and small-scale processes in galaxy evolution. The third will take place in July 2002 in Kiel (Germany) and will be devoted to the overall modelling of galaxy evolution. This book contains the proceedings of the first conference. It is recommended to researchers and PhD students in Astrophysics."
This is the first volume in a series of books on the general theme of Supersymmetric Mechanics; the series is based on lectures and discussions held in 2005 and 2006 at the INFN-Laboratori Nazionali di Frascati. The selected topics include supersymmetry and supergravity, the attractor mechanism, black holes, fluxes, noncommutative mechanics, super-Hamiltonian formalism and matrix models. Incorporates in extensive write-ups the results of animated discussion sessions which followed the individual lectures.
This mathematically-oriented introduction takes the point of view that students should become familiar, at an early stage, with the physics of relativistic continua and thermodynamics within the framework of special relativity. Therefore, in addition to standard textbook topics such as relativistic kinematics and vacuum electrodynamics, the reader will be thoroughly introduced to relativistic continuum and fluid mechanics. There is emphasis on the 3+1 splitting technique.
Here is a systematic approach to such fundamental questions as: What mathematical structures does Einstein-Weyl causality impose on a point-set that has no other previous structure defined on it? The author proposes an axiomatization of the physics inspired notion of Einstein-Weyl causality and investigating the consequences in terms of possible topological spaces. One significant result is that the notion of causality can effectively be extended to discontinuum.
The formation of galaxies is one of the greatest puzzles in astronomy, the solution is shrouded in the depths of space and time, but has profound implications for the universe we observe today. This book discusses the beginnings of the process from cosmological observations and calculations. It examines the different theories of galaxy formation and shows where each theory either succeeds or fails in explaining what we actually observe. In addition, the book looks ahead to what we may expect to uncover about the epoch of galaxy formation from the new and upcoming generations of telescopes and technology.
The tremendous progress in astronomical observations over the past sixty years has revealed a vast structured universe whose fundamental parti cles are galaxies, and clusters thereof. The interpretation of the new astronomical evidence owes much to Einstein's insights and deductions. All our knowledge of the world derives from the light, more generally the energy, which reaches us from near and far. Einstein recognised the vital role of energy as the solE basis of our information about the workings of nature; his Special Theory of Relativity showed how our understanding of space and time Is linked with measurements involving reflecting light signals. He further demonstrated that matter exists in two interchangeable forms - a mass form and an energy form - which interact closely at all levels. His General Theory of Relativity dealt with the nature of this interaction in the context of gravitational fields, and led to a view of the universe which was soon observationally confirmed. Einstein's methods and results form the theoretical basis of modern cosmology which has spawned many 'models' of the universe; how ever, they all deal with an Einstein-type universe and they all employ his geometric approach to describe it."
Thisbookisaneditedversionofthelecturesdeliveredduringthe1stAegean SummerSchoolonCosmology,heldonSamosisland,Greece,inSeptember 21-29,2001,andorganizedjointlybytheDepartmentofMathematics,U- versity of the Aegean and the Department of Physics, National Technical UniversityofAthens. Cosmology,thescienceoftheuniverse,standsatthecrossroadsofmany ?eldsofphysicsandmathematicsandpresentsuswithchallengingproblems of many forms. Although there are by now many textbooks discussing the subjectatmanylevels,itistruethatnosinglebookhasthecharacteristics wehadinmindwheneditingthisvolume. Wehavetriednottoproducea proceedingsvolumebutmoreamultiauthoredtextbookwhichcouldserveas areferencesourceofcurrentideasincosmology. Webelievethisbookcovers atanintroductorylevelmostoftheissueswhichareconsideredimportant inmoderncosmologicalresearchandcanbereadbyagraduatestudentor researcherwhowishestoacquireareasonableknowledgeofcosmologythat will,wehope,continuetobeofvalueforyearstocome. The 1st Aegean School on Cosmology, and consequently this book, - camepossiblewiththekindsupportofmanypeopleandorganizations. We received ?nancial support from the following sources and this is gratefully acknowledged: the Municipality of Karlovassi, the North Aegean Regional Secretariat, the Prefecture of Samos, the Ministry of the Aegean, and the NationalBankofGreece. TheadministrativesupportoftheSchoolwastakenupwithgreatcare byMrs. EvelynPappaandMantoKatsianiandwewouldliketothankthem bothfortheirkinde?ortstoresolvemanyissueswhicharosebefore,during andaftertheSchool. WeacknowledgethehelpofMr. NectariosBenekoswho designedandmaintainedthewebsiteoftheSchool. Last,butnotleast,wearegratefultothesta?ofSpringer-Verlag,resp- siblefortheLectureNotesinPhysics,whoseabilitiesandhelpcontributed greatlytothe?neappearanceofthisbook. Karlovassi,Samos, SpirosCotsakis March2002 EleftheriosPapantonopoulos TableofContents PartI HistoryandOverview 1 IsNatureGeneric? SpirosCotsakis,PeterG. L. Leach...3 1. 1 Introduction...3 1. 2 PrinciplesofCosmologicalModelling...4 1. 2. 1 Spacetimes...4 1. 2. 2 TheoriesofGravity...5 1. 2. 3 MatterFields...6 1. 3 Cosmologies...6 1. 4 CosmologicalProblems...8 1. 4. 1 TheSingularityProblem...8 1. 4. 2 TheProblemofCosmicTopology...9 1. 4. 3 TheProblemofAsymptoticStates...9 1. 4. 4 GravityTheoriesandtheEarlyUniverse...11 1. 5Outlook ...12 References...14 2 EvolutionofIdeasinModernCosmology AndreasParaskevopoulos...16 2. 1 Introduction...16 2. 2 TheBeginningsofModernCosmology(1917-1950)...17 2. 3 Cosmology1950-1970:HotBigBang, SingularitiesandQuantumApproach...20 2. 4 Cosmology1970-Thisbookisaneditedversionofthelecturesdeliveredduringthe1stAegean SummerSchoolonCosmology,heldonSamosisland,Greece,inSeptember 21-29,2001,andorganizedjointlybytheDepartmentofMathematics,U- versity of the Aegean and the Department of Physics, National Technical UniversityofAthens. Cosmology,thescienceoftheuniverse,standsatthecrossroadsofmany ?eldsofphysicsandmathematicsandpresentsuswithchallengingproblems of many forms. Although there are by now many textbooks discussing the subjectatmanylevels,itistruethatnosinglebookhasthecharacteristics wehadinmindwheneditingthisvolume. Wehavetriednottoproducea proceedingsvolumebutmoreamultiauthoredtextbookwhichcouldserveas areferencesourceofcurrentideasincosmology. Webelievethisbookcovers atanintroductorylevelmostoftheissueswhichareconsideredimportant inmoderncosmologicalresearchandcanbereadbyagraduatestudentor researcherwhowishestoacquireareasonableknowledgeofcosmologythat will,wehope,continuetobeofvalueforyearstocome. The 1st Aegean School on Cosmology, and consequently this book, - camepossiblewiththekindsupportofmanypeopleandorganizations. We received ?nancial support from the following sources and this is gratefully acknowledged: the Municipality of Karlovassi, the North Aegean Regional Secretariat, the Prefecture of Samos, the Ministry of the Aegean, and the NationalBankofGreece. TheadministrativesupportoftheSchoolwastakenupwithgreatcare byMrs. EvelynPappaandMantoKatsianiandwewouldliketothankthem bothfortheirkinde?ortstoresolvemanyissueswhicharosebefore,during andaftertheSchool. WeacknowledgethehelpofMr. NectariosBenekoswho designedandmaintainedthewebsiteoftheSchool. Last,butnotleast,wearegratefultothesta?ofSpringer-Verlag,resp- siblefortheLectureNotesinPhysics,whoseabilitiesandhelpcontributed greatlytothe?neappearanceofthisbook. Karlovassi,Samos, SpirosCotsakis March2002 EleftheriosPapantonopoulos TableofContents PartI HistoryandOverview 1 IsNatureGeneric? SpirosCotsakis,PeterG. L. Leach...3 1. 1 Introduction...3 1. 2 PrinciplesofCosmologicalModelling...4 1. 2. 1 Spacetimes...4 1. 2. 2 TheoriesofGravity...5 1. 2. 3 MatterFields...6 1. 3 Cosmologies...6 1. 4 CosmologicalProblems...8 1. 4. 1 TheSingularityProblem...8 1. 4. 2 TheProblemofCosmicTopology...9 1. 4. 3 TheProblemofAsymptoticStates...9 1. 4. 4 GravityTheoriesandtheEarlyUniverse...11 1. 5Outlook ...12 References...14 2 EvolutionofIdeasinModernCosmology AndreasParaskevopoulos...16 2. 1 Introduction...16 2. 2 TheBeginningsofModernCosmology(1917-1950)...17 2. 3 Cosmology1950-1970:HotBigBang, SingularitiesandQuantumApproach...20 2. 4 Cosmology1970-1990:Chaotic,In?ationary, QuantumandAlternative...22 2. 5ConclusionsandOutlook ...25 References...26 VIII TableofContents PartII MathematicalCosmology 3ConstraintsandEvolutioninCosmology YvonneChoquet-Bruhat,JamesW. York...29 3. 1 Introduction...29 3. 2 MovingFrameFormulas...30 3. 2. 1 FrameandCoframe...30 3. 2. 2 Metric...31 3. 2. 3 Connection...31 3. 2. 4 Curvature ...32 3. 3 (n+1)-SplittingAdaptedtoSpaceSlices ...33 3. 3. 1 De?nitions...33 3. 3. 2 StructureCoe?cients...34 3. 3. 3 SplittingoftheConnection ...
All physicists would agree that one of the most fundamental problems of the 21st century physics is the dimensionality of the world. In the four-dimensional world of Minkowski (or Minkowski spacetime) the most challenging problem is the nature of the temporal dimension. In Minkowski spacetime it is merely one of the four dimensions, which means that it is entirely given like the other three spacial dimensions. If the temporal dimension were not given in its entirety and only one constantly changing moment of it existed, Minkowski spacetime would be reduced to the ordinary three-dimensional space. But if the physical world, represented by Minkowski spacetime, is indeed four-dimensional with time being the fourth dimension, then such a world is drastically different from its image based on our perceptions. Minkowski four-dimensional world is a block Universe, a frozen world in which nothing happens since all moments of time are given at once', which means that physical bodies are four-dimensional worldtubes containing the whole histories in time of the three-dimensional bodies of our everyday experience. The implications of a real Minkowski world for physics itself and especially for our world view are enormous. The main focus of this volume is the question: is spacetime nothing more than a mathematical space (which describes the evolution in time of the ordinary three-dimensional world) or is it a mathematical model of a real four-dimensional world with time entirely given as the fourth dimension? It contains fourteen invited papers which either directly address the main question of the nature of spacetime or explore issues related to it."
The 1980's have been times of great excitement in Astrophysics and Cosmology. Professors Dennis Sciama and Fabio Mardirossian and all the other Members of the Organizing Committees are to be congratulated for having given us a taste of this excitement in Trieste, by inviting the leaders of the subject to the meeting they have organized. The excitement has corne from the new observations of the three-dimensional structure of the universe through a large number of new measurements of redshifts. These have revealed that clusters of galaxies are distributed on the surface of big empty bubbles of diameters of the order of 20-50 Mpc. Additionally, there is some evidence for invisible dark matter (whose composition is not known) as well as evidence for the gravitational lens effect. To cap this has corne the supernova of 1987, an event which last occurred 383 years ago. For the first time in history, the neutrino flux from the supernova was measured, giving limits to neutrino masses and numbers of neutrino types. (The dark matter problem is related to Particle Physics - beyond this standard model). It is good to be alive when all this happens and to try to comprehend this. Once again, our appreciation to the organisers and to those who presented their beautiful results.
This volwne is the proceedings of the third school in particle astrophysics that Schramm and Galeotti have organized at Erice. The focus of thirs third school was the Generation of Cosmological Large-Scale Structure. It was held in November of 1996. The fIrst school in the series was on "Gauge Theory and the Early Universe" in May 1986, the second was on "Dark Matter in the Universe" in May 1988. All three schools have been successful under the auspices of the NATO Advanced Study Institute. This volume is thus the third in the series of the proceedings of these schools. The choice of the topic for this third school was natural, since the problem of generating a large-scale structure has become the most pressing problem in cosmology today. In particular, it is this generation of structure that is the interface between astronomical observations and particle models for the early universe. To date, all models for generating structures inevitably require new fundamental physics beyond the standard, SU x SU X U , model of high energy physics. The 3 2 I seeds for generating structures usually invoke unifIcation physics, and the matter needed to clump and form them seems to require particle properties that have not been seen in laboratories to date.
This book contains the expanded lecture notes of the 32nd Saas-Fee Advanced Course. The three contributions present the central themes in modern research on the cold universe, ranging from cold objects at large distances to the physics of dust in cold clouds.
Is time, even locally, like the real line? Multiple structures of time, implicit in physics, create a consistency problem. A tilt in the arrow of time is suggested as the most conservative hypothesis which provides approximate consistency within physics and with topology of mundane time. Mathematically, the assumed constancy of the velocity of light (needed to measure time) implies functional differential equations of motion, that have both retarded and advanced deviating arguments with the hypothesis of a tilt. The novel features of such equations lead to a nontrivial structure of time and quantum-mechanical behaviour. The entire argument is embedded in a pedagogical exposition which amplifies, corrects, and questions the conventionally accepted approach. The exposition includes historical details and explains, for instance, why the entropy law is inadequate for time asymmetry, and why notions such as time asymmetry (hence causality) may be conceptually inadequate. The first three parts of the book are especially suited as supplementary reading material for undergraduate and graduate students and teachers of physics. The new ideas are addressed to researchers in physics and philosophy of science concerned with relativity and the interpretation of quantum mechanics.
This is the third volume in a series of books on the general topics of Supers- metric Mechanics, with the ?rst and second volumes being published as Lecture Notes in Physics Vol. 698, Supersymmetric Mechanics - Vol. 1: Supersymmetry, Noncommutativity and Matrix Models (ISBN: 3-540-33313-4), and Lecture Notes in Physics Vol. 701, Supersymmetric Mechanics - Vol. 2: The Attractor Mechanism and Space Time Singularities (ISBN: 3-540-34156-0). The aim of this ongoing collection is to provide a reference corpus of suitable, introductory material to the ?eld, by gathering the signi?cantly expanded and edited versions of all tutorial lectures, given over the years at the well-established annual INFN-Laboratori Nazionali di Frascati Winter School on the Attractor Mechanism, directed by myself. The present set of notes results again from the participation and dedication of prestigious lecturers, such as Iosif Bena, Sergio Ferrara, Renata Kallosh, Per Kraus, Finn Larsen, and Boris Pioline. As usual, the lectures were subsequently carefully edited and reworked, taking into account the extensive follow-up discussions. The present volume emphasizes topics of great recent interest, namely general concepts of attractors in supersymmetric gravity and black holes.
Quasars, and the menagerie of other galaxies with "unusual nuclei," now collectively known as Active Galactic Nuclei or AGN, have, in one form or another, sparked the interest of astronomers for over 60 years. The only known mechanism that can explain the staggering amounts of energy emitted by the innermost regions of these systems is gravitational energy release by matter falling towards a supermassive black hole --- a black hole whose mass is millions to billions of times the mass of our Sun. AGN emit radiation at all wavelengths. X-rays originating at a distance of a few times the event horizon of the black hole are the emissions closest to the black hole that we can detect; thus, X-rays directly reveal the presence of active supermassive black holes. Oftentimes, however, the supermassive black holes that lie at the centers of AGN are cocooned in gas and dust that absorb the emitted low energy X-rays and the optical and ultraviolet light, hiding the black hole from view at these wavelengths. Until recently, this low-energy absorption presented a major obstacle in observational efforts to map the accretion history of the universe. In 1999 and 2000, the launches of the Chandra and XMM-Newton X-ray Observatories finally broke the impasse. The impact of these observatories on X-ray astronomy is similar to the impact that the Hubble Space Telescope had on optical astronomy. The astounding new data from these observatories have enabled astronomers to make enormous advances in their understanding of when accretion occurs."
The Workshop "Science with the VLT in the ELT Era" held in Garching from 8th to 12th October 2007 was organised by ESO, with support from its Scienti c and Technical Committee, to provide a forum for the astronomical community to debate the long term future of ESO's Very Large Telescope (VLT) and its interferometric mode (VLTI). In particular it was considered useful for future planning to evaluate how its science use may evolve over the next decade due to competition and/or synergy with new facilities such as ALMA, JWST and, hopefully, at least one next generation 30-40 m extremely large telescope whose acronym appears in the title to symbolise this wider context. These discussions were also held in the fresh light of the Science Vision recently developed within ASTRONET as the rst step towards a 20 year plan for implementing astronomical facilities-the rst such attempt within Europe. Speci c ideas and proposals for new, second generation VLT/I instruments were also solicited following a tradition set by several earlier Workshops held since the start of the VLT development. The programme consisted of invited talks and reviews and contributed talks and posters. Almost all those given are included here although, unfortunately not the several lively but constructive discussion sessions.
This book looks at answers to the biggest questions in astronomy - the questions of how the planets, stars, galaxies and the universe were formed. Over the last decade, a revolution in observational astronomy has produced possible answers to three of these questions. This book describes this revolution. The one question for which we still do not have an answer is the question of the origin of the universe. In the final chapter, the author looks at the connection between science and philosophy and shows how new scientific results have laid the groundwork for the first serious scientific studies of the origin of the universe.
The contemporary theoretical physics consists, by and large, of two independent parts. The rst is the quantum theory describing the micro-world of elementary p- ticles, the second is the theory of gravity that concerns properties of macroscopic systems such as stars, galaxies, and the universe. The relativistic theory of gr- itation which is known as general relativity was created, at the beginning of the last century, by more or less a single man from pure idea combinations and bold guessing. The task was to "marry" the theory of gravity with the theory of special relativity. The rst attempts were aimed at considering the gravitational potential as a eld in Minkowski space-time. All those attempts failed; it took 10 years until Einstein nally solved the problem. The dif culty was that the old theory of gravity as well as the young theory of special relativity had to be modi ed. The next 50 years were dif cult for this theory because its experimental basis remained weak and its complicated mathematical structure was not well understood. However, in the subsequent period this theory ourished. Thanks to improvements in the te- nology and to the big progress in the methods of astronomical observations, the amount of observable facts to which general relativity is applicable was consid- ably enlarged. This is why general relativity is, today, one of the best experimentally tested theories while many competing theories could be disproved. Also the conc- tual and mathematical fundamentals are better understood now.
In 1997, contrary to the ruling paradigm which was that of a dark matter ?lled, decelerating universe, my work pointed to a dark energydriven- celerating universe with a small cosmological constant. Moreover, the many supposedly accidental Large Number relations in cosmology, including the mysterious Weinbergformula were now deduced from the theory. Obser- tionalcon?rmationforthisscenariocamein1998, whiledarkenergyitselfwas ?nally recon?rmed in 2003, thanks to the Wilkinson Microwave Anisotropy Probe and the Sloan Digital Sky Survey. The 1997, and subsequent work was the consequence of mainly three cons- erations: dark energy or the well known Zero Point Field, fuzzy spacetime and ?uctuations. Indeed String Theory and Quantum Gravity approaches have had to discard the smooth spacetime of General Relativity and Qu- tum Field Theory, in a quest for a uni?ed description of these two pillars of twentieth century physics. This book is the result of some seventy ?ve papers published in international journals, andpartlyanearlierbook,"TheChaoticUniverse: FromthePlanck to the Hubble Scale" (Nova Science, New York, 2001), as also several lectures delivered in Universities and institutes in the United States, Canada and - rope. It describes how, in a simple and somewhat conventional framework, an underpinning of Planck scale oscillators in the ubiquitous Zero Point Field or dark energy leads to a uni?ed description of phenomena involving elementary particles and the cosmos. In particular, apart from the cosmology mentioned above, these considerations lead to a uni?ed description of all interactions, includinggravitation, thoughinanextended gauge ?eld treatment.
Dark matter research is one of the most fascinating and active fields among current high-profile scientific endeavours. It holds the key to all major breakthroughs to come in the fields of cosmology and astroparticle physics. The present volume is particularly concerned with the sources and the detection of dark matter and dark energy in the universe and will prove to be an invaluable research tool for all scientists who work in this field. |
![]() ![]() You may like...
Stochastic Approximation and Recursive…
Harold Kushner, G. George Yin
Hardcover
R5,750
Discovery Miles 57 500
Nature-Based Flood Risk Management on…
Simon Mccarthy, Lenka Slavikova, …
Hardcover
R1,535
Discovery Miles 15 350
Graph Data Management - Fundamental…
George Fletcher, Jan Hidders, …
Hardcover
R1,601
Discovery Miles 16 010
Further Topics on Discrete-Time Markov…
Onesimo Hernandez-Lerma, Jean B. Lasserre
Hardcover
R4,034
Discovery Miles 40 340
Advances in Dynamics, Optimization and…
Oliver Junge, Oliver Schutze, …
Hardcover
R4,639
Discovery Miles 46 390
Analysis and Synthesis for Interval…
Hongyi Li, Ligang Wu, …
Hardcover
|