![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Relativity physics > General
Many large-scale projects for detecting gravitational radiation are currently being developed, all with the aim of opening a new window onto the observable Universe. As a result, numerical relativity has recently become a major field of research, and Elements of Numerical Relativity and Relativistic Hydrodynamics is a valuable primer for both graduate students and non-specialist researchers wishing to enter the field. A revised and significantly enlarged edition of LNP 673 Elements of Numerical Relativity, this book starts with the most basic insights and aspects of numerical relativity before it develops coherent guidelines for the reliable and convenient selection of each of the following key aspects: evolution formalism; gauge, initial, and boundary conditions; and various numerical algorithms. And in addition to many revisions, it includes new, convenient damping terms for numerical implementations, a presentation of the recently-developed harmonic formalism, and an extensive, new chapter on matter space-times, containing a thorough introduction to relativistic hydrodynamics. While proper reference is given to advanced applications requiring large computational resources, most tests and applications in this book can be performed on a standard PC.
The theory of General Relativity, after its invention by Albert Einstein, remained for many years a monument of mathemati cal speculation, striking in its ambition and its formal beauty, but quite separated from the main stream of modern Physics, which had centered, after the early twenties, on quantum mechanics and its applications. In the last ten or fifteen years, however, the situation has changed radically. First, a great deal of significant exper en tal data became available. Then important contributions were made to the incorporation of general relativity into the framework of quantum theory. Finally, in the last three years, exciting devel opments took place which have placed general relativity, and all the concepts behind it, at the center of our understanding of par ticle physics and quantum field theory. Firstly, this is due to the fact that general relativity is really the "original non-abe lian gauge theory," and that our description of quantum field in teractions makes extensive use of the concept of gauge invariance. Secondly, the ideas of supersymmetry have enabled theoreticians to combine gravity with other elementary particle interactions, and to construct what is perhaps the first approach to a more finite quantum theory of gravitation, which is known as super gravity."
Any student working with the celebrated Feynman Lectures will ?nd a chapter in it with the intriguing title Electromagnetic Mass [2, Chap. 28]. In a way, it looks rather out of date, and it would be easy to skate over it, or even just skip it. And yet all bound state particles we know of today have electromagnetic mass. It is just that we approach the question differently. Today we have multiplets of mesons or baryons, and we have colour symmetry, and broken ?avour symmetry, and we think about mass and energy through Hamiltonians. This book is an invitation to look at all these modern ideas with the help of an old light. Everything here is quite standard theory, in fact, classical electromagnetism for the main part. The reader would be expected to have encountered the theory of elec tromagnetism before, but there is a review of all the necessary results, and nothing sophisticated about the calculations. The reader could be any student of physics, or any physicist, but someone who would like to know more about inertia, and the clas sical precursor of mass renormalisation in quantum ?eld theory. In short, someone who feels it worthwhile to ask why F= ma.
This workshop was intended as an update and an extension of the workshop 011 the "Spectral Evolution of Galaxies" that was held in Erice two years ago. It concentrates 011 Ilew developments concerning galaxies seen at large look back times. This seemed also a good opportunity to look ahead to the next generation of ground- and space based instrumentation, and to consider various future strategies for collecting information concerning the edge of the observable universe. The main idea was to bring together people with specialities in modelling galaxy components (such as stars, clusters, gas, and dust) as well as whole stellar systems (stellar populations, star formation rates, chemical enrichment), and people specialized in making direct measurements of galaxies and clusters at large look back times. The confrontation of expectations and observations was planned to be the central theme of the conference, which explains the title "Towards Understanding Galaxies at Large Redshift." The first part of the workshop focussed on the physical processes that operate in galaxies, and that would likely have some observable manifestation at large redshifts. In the second part the most recent observational work was reported, and we were pleased to have the participation of most of the groups active in this field. The last part was directed towards new approaches to be made possible by the next generation of instrumentation, although in general all the contributions were indeed in this spirit of setting more ambitious goals."
This book evolved out of some one hundred lectures given by twenty experts at a special instructional conference sponsored by the University Grants Commis sion, India. It is pedagogical in style and self-contained in several interrelated areas of physics which have become extremely important in present-day theoretical research. The articles begin with an introduction to general relativity and cosmology as well as particle physics and quantum field theory. This is followed by reviews of the standard gauge models of high-energy physics, renormalization group and grand unified theories. The concluding parts of the book comprise discussions in current research topics such as problems of the early universe, quantum cosmology and the new directions towards a unification of gravitation with other forces. In addition, special concise treatments of mathematical topics of direct relevance are also included. The content of the book was carefully worked out for the mutual education of students and research workers in general relativity and particle physics. This ambitious programe consequently necessitated the involvement of a number of different authors. However, care has been taken to ensure that the material meshes into a unified, cogent and readable book. We hope that the book will serve to initiate and guide a student in these different areas of investigation starting from first principles and leading to the exciting current research problems of an interdisciplinary nature in the context of the origin and structure of the universe."
Scientists in the late twentieth century are not the first to view galaxy formation as a phenomenon worthy of explanation in terms of the known laws of physics. Already in 1754 Kant regarded the problem as essentially solved. In his Univerlal Natural Hutory and Theory 0/ the H eaven$ he wrote; "If in the immesurable space in which all the suns of the Milky Way have formed themselves, we assume a point around which, through some cause or other, the first formation of nature out of chaoo began, there the largest mass and a body of extraordinary attraction will have arisen which has thereby become capable of compelling all the systems in the process of being formed within an enormous sphere around it, to fall towards itself as their centre, and to build up a system around it on the great scale . . . . Observation puts this conjecture almost beyond doubt. " More than 200 years later, a similar note of confidence was voiced by Zel'dovicb at an IAU symposium held in Tallin in 1911; "Extrapolating . . . to the next symposium somewhere in the early eighties one can be pretty sure that the question of the formation of galaxies and clusters will be solved in the next few years. " Perhaps few astronomers today would share Kant's near certainty or feel that Zel'dovich's prophecy has been fulfilled, Many, however, will sympathize with the optimistic olltlook of these two statements.
This book is the result of a Meeting held in L'Aquila (Italy) from the 19th to the 23rd of June 1989. The aim of the Meeting was to gather together the people actively working on the Cosmic Microwave Background radiation, both from an experimental and from a theoretical point of view. In view of the intensive current activity in this field, including ongoing (COBE) and forthcoming (RELIC II, ISO, AELITA, etc. ) space missions, a meeting fully dedicated to this important topic was timely. The meeting also celebrated the 25th anniversary of the Microwave Background discovery made in 1964 by the Nobel Prize winners A. Penzias and R. Wilson. We greatly regret that we were not able to have them at the Meeting. There is of course another person whose absence we regret, namely R. H. Dicke, who motivated a generation of experimentalists and theoreticians to open and study this new field of research. As organizers of the Meeting, we would like to express our gratitude to the people who contributed to its success. We want to thank the members of the Scientific Organizing Committee for their assistance, suggestions and encouragement, the invited speakers for their excellent presentations, and the chairmen for their help in handling the various Sessions. We would like to thank P. Palazzi for her help in secretarial work, dr. L.
In light of the barrage of popular books on physics and cosmology, one may question the need for another. Here, two books especially come to mind: Steven Weinberg's The First Three Minutes, written 12 years ago, and the recent best-seller ABriefHistory of Time by Stephen Hawking. The two books are complementary. Weinberg-Nobel prize winner/physicist-wrote from the standpoint of an elementary particle physicist with emphasis on the contents of the universe, whereas Hawking wrote more as a general relativist with emphasis on gravity and the geometry of the universe. Neither one, however, presented the complete story. Weinberg did not 13 venture back beyond the time when temperature was higher than 10 K and 32 perhaps as high as 10 K. He gave no explanation for the origin of particles and the singularity or source of the overwhelming radiation energy in our uni verse of one billion photons for each proton. Hawking presents a uni verse that has no boundaries, was not created, and will not be destroyed. The object of this book is to describe my new theory on the creation of our uni verse in a multi-universe cosmos. The new cosmological model eliminates the troublesome singularity-big bang theory and explains for the first time the origin of matter and the overwhelming electromagnetic radiation contained in the universe. My new theory also predicted the existence ofhigh-energy gamma rays, which were recendy detected in powerful bursts.
The essays in this topical volume inquire into one of the most fundamental issues of philosophy and of the cognitive and natural sciences: the riddle of time. The central feature is the tension between the experience and the conceptualization of time, reflecting an apparently unavoidable antinomy of subjective first-person accounts and objective traditional science. Is time based in the physics of inanimate matter, or does it originate in the operation of our minds? Is it essential for the constitution of reality, or is it just an illusion? Issues of time, temporality, and nowness are paradigms for interdisciplinary work in many contemporary fields of research. The authors of this volume discuss profoundly the mutual relationships and inspiring perspectives. They address a general audience.
In the development of Fundamental Physics on one side, and of Astronomy/Cosmology on the other side, periods of parallell, relatively independent progress seem to alternate with others of intense interaction and mutual influence. To this latter case belong the very beginnings of Modern Physics, with Galileo and Newton. There is now a widespread feeling that another of such flourishing periods may have started some ten years ago, with the advent of Unified Theories and the introduction of Inflationary Cosmologies. The interaction between the two disciplines has become tighter ever since, spurring studies of e. g. astronomical and particle Dark Matter candidates, Superstrings and Cosmic Strings, phase transitions in the Early Universe, etc. etc. Then the recent birth of Neutrino Astronomy has added further flavor to this splendid conjunction. It was indeed with the clear perception of this trend that six years ago CERN and ESO decided to jointly organize a series of symposia focusing on the interactions between Astronomy, Cosmology, and Fundamental Physics, to be held about every two years. The aim of these meetings is to bring together astronomers, cosmologists, and particle physicists to exchange information, to discuss scientific issues of common interest, and to take note of the latest devolopments in each discipline that are relevant to the other. The First ESO-CERN Symposium was held at CERN (Geneva) on November 21-25, 1983. Then for its Second edition the ESO-CERN Symposium moved to Garching bei Miinchen, where ESO headquarters are located, and took place on March 17-21, 1986.
The sixteenth European Conference on Few Body Problems in Physics has taken place from June 1 to June 6, 1998, in Autrans, a little village in the mountains, close to Grenoble. The Conference follows those organized in Peniscola (1995), Amsterdam (1993), Elba (1991), Uzhgorod (1990) ... The present one has been organized by a group of physicists working in different fields at the University Joseph Fourier of Grenoble who find in this occasion a good opportunity to join their efforts. The core of the organizing committee was nevertheless located at the Institut des Sciences Nucleaires, whose physicists, especially in the group of theoretical physics, have a long tradition in the domain. The Few Body Conference has a natural tendency to be a theoretical one - the exchange about the methods used in different fields is the common point to most participants. It also has a tendency to be a hadronic physics one - the corresponding physics community, perhaps due to the existence of experimen tal facilities devoted to the study of few body systems, is better organized. In preparing the scientific program, we largely relied on the advices of the Inter national Advisory Committee, while avoiding to follow these trends too closely."
The International Conference on the History of Original Ideas and Basic Discoveries, held at the "Ettore Majorana" Centre for Scientific Culture in Erice, Sicily, July 27-August 4, 1994, brought together sixty of the leading scientists including many Nobel Laureates in high energy physics, principal contributors in other fields of physics such as high Tc superconductivity, particle accelerators and detector instrumentation, and thirty-six talented younger physicists selected from candidates throughout the world. The scientific program, including 49 lectures and a discussion session on the "Status and Future Directions in High Energy Physics" was inspired by the conference theme: The key experimental discoveries and theoretical breakthroughs of the last 50 years, in particle physics and related fields, have led us to a powerful description of matter in terms of three quark and three lepton families and four fundamental interactions. The most recent generation of experiments at e+e- and proton-proton colliders, and corresponding advances in theoretical calculations, have given us remarkably precise determinations of the basic parameters of the electroweak and strong interactions. These developments, while showing the striking internal consistency of the Standard Model, have also sharpened our view of the many unanswered questions which remain for the next generation: the origin and pattern of particle masses and families, the unification of the interactions including gravity, and the relation between the laws of physics and the initial conditions of the universe.
The contemporary trends in the quantum unification of all interactions including gravity motivate this Course. The main goal and impact of modern string theory is to provide a consistent quantum theory of gravity. This, Course is intended to provide an updated understanding of the last developments and current problems of string theory in connection with gravity and the physics at the Planck energy scale. It is also the aim of this Course to discuss fundamental problems of quantum gravity in the present-day context irrespective of strings or any other models. Emphasis is given to the mutual impact of string theory, gravity and cosmology, within a deep a well defined programme, which provides, in addition, a careful interdisciplinarity. Since the most relevant new physics provided by strings concerns the quantization of gravity, we must, at least, understand string quantization in curved space-times to start. Curved space-times, besides their evident relevance m classical gravitation, are also important at energies of the order of the Planck scale. At the Planck energy, gravitational interactions are at least as important as the rest and can not be neglected anymore. Special care is taken here to provide the grounds of the different lines of research in competition (not just only one approach); this provides an excellent opportunity to learn about the real state of the discipline, and to learn it in a critical way.
In one ofthe fundamental notions is that any physical theory of of energy the hand: in mechanics at one considers the objects energy of, say, moving in fieldtheories is one interested inthe offield masses; energy configurations. A unified treatment of this which both to mechanics question, applies and to field Hamiltonian a formalism. We will theory, proceeds through shortly reviewbelowhowsuch iscarried aprocedure out inthe ofscalarfields theory Minkowski let at this on mention that an space time; us, stage, important often inthe isthat ofthe issue, ignored conditions sat textbooks, boundary isfied the set of fields under consideration. While by this issuecanbe safely for when the ignored usual field many purposes considering theories, such scalar fields or the = as on electromagnetism, ft constj hypersurfaces, where t is a it sometimes critical Minkowski time, a rolewhen other plays of classes are considered. Inthe of the hypersurfaces case situation is gravity for t= worse: even Minkowskian slicesthe f constj asymptotically boundary terms crucial. is ofthe are one main differencesbetweentheArnowitt (This Deser Misner for Sect. 5. 4 mass which is (ADM) gravity (cf. below), given a andthe usual for by boundary integral, field theories in energyexpression Minkowski wheretheHamiltonian is volume space time, a usually integral. ) in field the itsmost role in Now, theory plays important theradiation energy where it can be radiated the field.
The International Conference "Primordial Nucleosynthesis and Evolution of Early Universe" was held in the presence of Prof. William Fowler on 4 - 8 September 1990 at the Sanjo Conference Hall, the University of Tokyo. This conference was co-sponsored by IUPAP, the International Union of Pure and Applied Physics, and by the University of Tokyo. The number of participants was 156, 58 from 15 foreign countries and 98 from Japan. About 120 contributions were submitted orally or as posters. Originally this conference was planned as a small gathering on Primordial Nucleosynthesis as indicated in the title, since primordial nucleosynthesis is the most important probe of the early stage of the universe. As is well known, light element abundances strongly depend on the time evolution of temperature and density. In this sense we can say that primordial nucleosynthesis is both the thermometer and speedometer of the early universe. Moreover, recently it has been claimed that primordial nucleosynthesis is an indicator of inhomogeneity of the early universe too. Now research of the primordial nucleosynthesis is in a boom. We, however, decided to include observational cosmology, of observations. taking into account the recent remarkable results Nowadays, to reveal the large scale structure of the universe and discover its origin is a main subject in cosmology. We invited distinguished scientists from all over the world, and very fortunately almost all these people accepted to attend this conference.
Clusters and superclusters of galaxies are the largest objects in the Universe. They have been the subject of intense observational studies at a variety of wavelengths, from radio to X-ray which has provoked much theoretical debate and advanced our understanding of the recent evolution of the large-scale structure of the Universe. The current status of the subject is reviewed in this volume by active researchers who lectured at a NATO Advanced Study Institute held in Cambridge, England in July 1991. Much of the material is presented in a pedagogical manner and will appeal to scientists, astronomers and graduate students interested in extragalactic astronomy.
First published in 1973, this influential work discusses Einstein's General Theory of Relativity to show how two of its predictions arise: first, that the ultimate fate of many massive stars is to undergo gravitational collapse to form 'black holes'; and second, that there was a singularity in the past at the beginning of the universe. Starting with a precise formulation of the theory, including the necessary differential geometry, the authors discuss the significance of space-time curvature and examine the properties of a number of exact solutions of Einstein's field equations. They develop the theory of the causal structure of a general space-time, and use it to prove a number of theorems establishing the inevitability of singularities under certain conditions. A Foreword contributed by Abhay Ashtekar and a new Preface from George Ellis help put the volume into context of the developments in the field over the past fifty years.
A small country builds a world-class telescope in its backyard and lives happily ever after (or at least for a quarter century). That in a nutshell is the story told in this collection of essays. The country of course is the Netherlands, and the telescope is the Westerbork Synthesis Radio Tele scope (WSRT), brainchild of Jan Oort. Living happily in this context is a continuing record of discovery and as such also a continuing basis for se curing observing time on facilities in other countries and operating at other frequencies. As our community celebrates the Silver Anniversary of the radio tele scope at Westerbork, it is fitting that we pause to take account of the scientific discoveries and insights it made possible. Initially the instrument represented the very significant step away from university-run, specialist facilities to a well-supported, common-user radio imager also having spec tral and polarization capabilities. It pioneered the mode of operation now common for satellite observatories, in which data is taken and calibrated by technicians and provided to researchers ready for analysis. It has been a major source of discovery in, among other areas, research on neutral hy drogen and studies of dark matter in galaxies.
The visible universe is a small perturbation on the material universe. Zwicky and Sinclair Smith in the 1930s gave evidence of invisible mass in the Coma and Virgo Clusters of Galaxies. Better optical data has only served to confound their critics and the X-ray data confirms that the gravitational potentials are many times larger than those predicted on the basis of the observed stars. Dynamical analyses of individual galaxies have found that significant extra mass is needed to explain their rotational velocities. On much larger scales, tens of megaparsecs, there is suggestive evidence that there is even more mass per unit luminosity. What is this non-luminous stuff of which the universe is made'? How much of it is there? Need there be only one kind of stuff? There are three basic possi bili ties:- all of it is ordinary (baryonic) matter, all of it is some other kind of (non-baryonic) matter, or some of it is baryonic and some is non-baryonic.
edited by c. H. Lineweaver, J. G. Bartlett, A. Blanchard Observatoire Astronomique de Strasbourg, Strasbourg, France M. Signore Ecole normale superieure, Paris, France and J. Silk Departments of Astronomy and Physics, University of California at Berkeley, Berkeley, CA, U. S. A. Kluwer Academic Publishers Dordrecht / Boston / London Published in cooperation with NATO Scientific Affairs Division ISBN-13:978-94-010-6512-2 e-ISBN-13:978-94-009-0051-6 DOI:10. 107/ 978-94-009-0051-6 Softcover reprint of the hardcover 1st edition 1997 Dedication We dedicate these proceedings to the people who paid for it: taxpayers of the NATO alliance. Table of Contents PREFACE IX LIST OF PARTICIPANTS XI LISTOF CONTRIBUTORS Xlll I. Introduction, Mathematical Tools and Background An Introduction to CBR Studies: Spectrum, Degree-Scale Fluctuations, Foregrounds and Interferometry R. B. Partridge ElementsofGeneral Relativity, Cosmology and the Cosmic Microwave Background Jose L. Sanz 33 Statisticsand Random Functions in Astrophysics BernhardIT. Jones 67 Structure Formation Joseph Silk III II. eMB Anistropies CalculationofCosmic Background Radiation Anisotropies and Implications Emory F. Bunn 135 The CMB Anistropy Experiments: Cosmic Microwave Background George F. Smoot 185 viii III. CMB Spectrum The CMBR-Spectrum: ATheoretical Introduction Albert Stebbins 241 The CMB Spectrum George F. Smoot 271 IV. Astroparticle Physics Inflation and the Cosmic Background Radiation: What Every Cosmologist Needs to Know Michael S. Turner 309 Primordial Chemistry and Cosmic Background Radiation M. Signori, P. Encrenaz, R. MaoJi, B. Melchiorri, F. Melchiorri and D. Puy 345 The Cosmic Background Radiation and Elementary Particles Pierre Salati 365 V.
The main goal of this work is to revisit the proof of the global stability of Minkowski space by D. Christodoulou and S. Klainerman, [Ch-KI]. We provide a new self-contained proof of the main part of that result, which concerns the full solution of the radiation problem in vacuum, for arbitrary asymptotically flat initial data sets. This can also be interpreted as a proof of the global stability of the external region of Schwarzschild spacetime. The proof, which is a significant modification of the arguments in [Ch-Kl], is based on a double null foliation of spacetime instead of the mixed null-maximal foliation used in [Ch-Kl]. This approach is more naturally adapted to the radiation features of the Einstein equations and leads to important technical simplifications. In the first chapter we review some basic notions of differential geometry that are sys tematically used in all the remaining chapters. We then introduce the Einstein equations and the initial data sets and discuss some of the basic features of the initial value problem in general relativity. We shall review, without proofs, well-established results concerning local and global existence and uniqueness and formulate our main result. The second chapter provides the technical motivation for the proof of our main theorem.
This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves near a target edge at a distance ( - Lorentz factor, - wave length). Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.
Dr. KURT GODEL'S sixtieth birthday (April 28, 1966) and the thirty fifth anniversary of the publication of his theorems on undecidability were celebrated during the 75th Anniversary Meeting of the Ohio Ac ademy of Science at The Ohio State University, Columbus, on April 22, 1966. The celebration took the form of a Festschrift Symposium on a theme supported by the late Director of The Institute for Advanced Study at Princeton, New Jersey, Dr. J. ROBERT OPPENHEIMER: "Logic, and Its Relations to Mathematics, Natural Science, and Philosophy." The symposium also celebrated the founding of Section L (Mathematical Sciences) of the Ohio Academy of Science. Salutations to Dr. GODEL were followed by the reading of papers by S. F. BARKER, H. B. CURRY, H. RUBIN, G. E. SACKS, and G. TAKEUTI, and by the announcement of in-absentia papers contributed in honor of Dr. GODEL by A. LEVY, B. MELTZER, R. M. SOLOVAY, and E. WETTE. A short discussion of "The II Beyond Godel's I" concluded the session."
This NATO Advanced Study Institute course provided an updated understanding, from a fundamental and deep point of view, of the progress and current problems in the early universe, cosmic microwave background radiation, large-scale struc ture, dark matter problem, and the interplay between them. Emphasis was placed on the mutual impact of fundamental physics and cosmology, both at the theo retical and experimental or observational levels, within a deep and well defined programme, and a global unifying view, which, in addition, provides of careful inter-disciplinarity. In addition, each course of this series introduced and promoted topics or sub jects which, although not of a purely astrophysical or cosmological nature, were of relevant physical interest for astrophysics and cosmology. Deep understanding, clarification, synthesis, and careful interdisciplinarity within a fundamental physics framework, were the main goals of the course. Lectures ranged from a motivation and pedagogical introduction for students and participants not directly working in the field to the latest developments and most recent results. All lectures were plenary, had the same duration, and were followed by a discus sion. The course brought together experimentalists and theoreticans physicists, astro physicists and astronomers from a wide variety of backgrounds, including young scientists at the post-doctoral level, senior scientists and advanced graduate stu dents as well.
NASA's Advanced Composition Explorer (ACE) was launched on August 25, 1997, carrying six high-resolution spectrometers that measure the abundances of the elements, isotopes, and ionic charge states of energetic nuclei in space. Data from these instruments is being used to measure and compare the composition of the solar corona, the nearby interstellar medium, and cosmic-ray sources in the Galaxy, and to study particle acceleration processes in a variety of environments. ACE also includes three instruments that monitor solar wind and energetic particle activity near the inner Lagrangian point, "1.5 million kilometers sunward of Earth, and provide continuous, real-time data to NOAA for use in forecasting space weather. Eleven of the articles in this volume review scientific progress and outline questions that ACE will address in solar, space-plasma, and cosmic-ray physics. Other articles describe the ACE spacecraft, the real-time solar-wind system, and the instruments used to measure energetic particle composition. |
You may like...
Security Breaches and Threat Prevention…
N. Jeyanthi, R. Thandeeswaran
Hardcover
R4,514
Discovery Miles 45 140
Fundamentals of Nanoscaled Field Effect…
Amit Chaudhry
Hardcover
|