![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Relativity physics > General
This richly annotated facsimile edition of "The Foundation of General Relativity" introduces a new generation of readers to Albert Einstein's theory of gravitation. Written in 1915, this remarkable document is a watershed in the history of physics and an enduring testament to the elegance and precision of Einstein's thought. Presented here is a beautiful facsimile of Einstein's original handwritten manuscript, along with its English translation and an insightful page-by-page commentary that places the work in historical and scientific context. Hanoch Gutfreund and Jurgen Renn's concise introduction traces Einstein's intellectual odyssey from special to general relativity, and their essay "The Charm of a Manuscript" provides a delightful meditation on the varied afterlife of Einstein's text. Featuring a foreword by John Stachel, this handsome edition also includes a biographical glossary of the figures discussed in the book, a comprehensive bibliography, suggestions for further reading, and numerous photos and illustrations throughout.
The Springer Handbook of Spacetime is dedicated to the ground-breaking paradigm shifts embodied in the two relativity theories, and describes in detail the profound reshaping of physical sciences they ushered in. It includes in a single volume chapters on foundations, on the underlying mathematics, on physical and astrophysical implications, experimental evidence and cosmological predictions, as well as chapters on efforts to unify general relativity and quantum physics. The Handbook can be used as a desk reference by researchers in a wide variety of fields, not only by specialists in relativity but also by researchers in related areas that either grew out of, or are deeply influenced by, the two relativity theories: cosmology, astronomy and astrophysics, high energy physics, quantum field theory, mathematics, and philosophy of science. It should also serve as a valuable resource for graduate students and young researchers entering these areas, and for instructors who teach courses on these subjects. The Handbook is divided into six parts. Part A: Introduction to Spacetime Structure. Part B: Foundational Issues. Part C: Spacetime Structure and Mathematics. Part D: Confronting Relativity theories with observations. Part E: General relativity and the universe. Part F: Spacetime beyond Einstein.
This book is a comprehensive survey of the current state of knowledge about the dynamics and gravitational properties of cosmic strings treated in the idealized classical approximation as line singularities described by the Nambu-Goto action. The author's purpose is to provide a standard reference to all work that has been published since the mid-1970s and to link this work together in a single conceptual framework and a single notational formalism. A working knowledge of basic general relativity is assumed. The book will be essential reading for researchers and postgraduate students in mathematics, theoretical physics, and astronomy interested in cosmic strings.
Applications of quantum field theoretical methods to gravitational physics, both in the semiclassical and the full quantum frameworks, require a careful formulation of the fundamental basis of quantum theory, with special attention to such important issues as renormalization, quantum theory of gauge theories, and especially effective action formalism. The first part of this graduate textbook provides both a conceptual and technical introduction to the theory of quantum fields. The presentation is consistent, starting from elements of group theory, classical fields, and moving on to the effective action formalism in general gauge theories. Compared to other existing books, the general formalism of renormalization in described in more detail, and special attention paid to gauge theories. This part can serve as a textbook for a one-semester introductory course in quantum field theory. In the second part, we discuss basic aspects of quantum field theory in curved space, and perturbative quantum gravity. More than half of Part II is written with a full exposition of details, and includes elaborated examples of simplest calculations. All chapters include exercises ranging from very simple ones to those requiring small original investigations. The selection of material of the second part is done using the "must-know" principle. This means we included detailed expositions of relatively simple techniques and calculations, expecting that the interested reader will be able to learn more advanced issues independently after working through the basic material, and completing the exercises.
'Everything you wanted to know about physics but were afraid to ask' Priyamvada Natarajan, author of Mapping the Heavens __________________________ When leading theoretical physicist Professor Michael Dine was asked where you could find an accessible book that would teach you about the Big Bang, Dark Matter, the Higgs boson and the cutting edge of physics now, he had nothing he could recommend. So he wrote it himself. In This Way to the Universe, Dine takes us on a fascinating tour through the history of modern physics - from Newtonian mechanics to quantum, from particle to nuclear physics - delving into the wonders of our universe at its largest, smallest, and within our daily lives. If you are looking for the one book to help you understand physics, written in language anyone can follow, this is it. __________________________ 'An extraordinary journey into what we know, what we hope to know, and what we don't know, about the universe and the laws that govern it' Leonard Susskind, author of The Theoretical Minimum series 'This book is a rare event . . . presented by someone who is a true master' Sean Carroll, author of From Eternity to Here 'Dine's enthusiastic storytelling makes the read worth it for those who want to finally wrap their mind around string theory or the Higgs boson' Tess Joosse, Scientific American
Universally recognized as bringing about a revolutionary
transformation of the notions of space, time, and motion in
physics, Einstein's theory of gravitation, known as "general
relativity," was also a defining event for 20th century philosophy
of science. During the decisive first ten years of the theory's
existence, two main tendencies dominated its philosophical
reception. This book is an extended argument that the path actually
taken, which became logical empiricist philosophy of science,
greatly contributed to the current impasse over realism, whereas
new possibilities are opened in revisiting and reviving the spirit
of the more sophisticated tendency, a cluster of viewpoints broadly
termed transcendental idealism, and furthering its articulation. It
also emerges that Einstein, while paying lip service to the
emerging philosophy of logical empiricism, ended up siding de facto
with the latter tendency.
Dynamic Fields and Waves concentrates on electric and magnetic fields that vary with time, including light and electromagnetic waves. Written for an undergraduate introductory course but equally suitable for self-study, this practical, illustrated book discusses waves in general and light waves in particular, together with optical instruments, such as telescopes and microscopes, and electrical devices, such as generators and transformers. It also explores Einstein's special theory of relativity, which gives the most basic insight into space and time.
Features: Authored by experienced lecturers in Particle Physics, Quantum Field Theory, Nuclear Physics, and General Relativity Provides an accessible introduction to Particle Physics and Cosmology
This book features a comprehensive review of experimental gravitation. It is a textbook based on the graduate courses on "Experimental Gravitation" given by the authors at their respective universities in Rome: Sapienza and Tor Vergata. A number of different research topics in the field are covered: from the torsion pendulum (still today the tool of choice for measuring small forces or torques) to the large interferometers developed to observe gravitational waves. Techniques that are still under development are also discussed, like the pulsar timing array and space-based detectors of the future. This book is written by experimentalists for experimentalists. While the background physics is summarized for less experienced readers, the emphasis is certainly on experimental verifications: the strategy, the apparatuses, the data analysis and the results of many cornerstone experiments are analyzed and discussed in depth. This textbook serves as a useful resource for both graduate students and professionals working in the increasingly vibrant field of experimental gravity.
"General Relativity Without Calculus" offers a compact but mathematically correct introduction to the general theory of relativity, assuming only a basic knowledge of high school mathematics and physics. Targeted at first year undergraduates (and advanced high school students) who wish to learn Einstein's theory beyond popular science accounts, it covers the basics of special relativity, Minkowski space-time, non-Euclidean geometry, Newtonian gravity, the Schwarzschild solution, black holes and cosmology. The quick-paced style is balanced by over 75 exercises (including full solutions), allowing readers to test and consolidate their understanding.
The third volume in Leonard Susskind's one-of-a-kind physics series cracks open Einstein's special relativity and field theory In the first two books in his wildly popular The Theoretical Minimum series, world-class physicist Leonard Susskind provided a brilliant first course in classical and quantum mechanics, offering readers not an oversimplified introduction, but the real thing - everything you need to start doing physics, and nothing more. Now, thankfully, Susskind and his former student Art Friedman are back, this time to introduce readers to special relativity and classical field theory. At last, waves, forces and particles will be demystified. Using their typical brand of relatively simple maths, enlightening sketches and the same fictional counterparts, Art and Lenny, Special Relativity and Classical Field Theory takes us on an enlightening journey through a world now governed by the laws of special relativity. Starting in their new watering hole, Hermann's Hideaway, with a lesson on relativity, Art and Lenny walk us through the complexities of Einstein's famous theory. Combining rigor with humour, Susskind and Friedman guarantee that Special Relativity and Classical Field Theory will become part of the reader's physics toolbox.
"Relativity In our Time" is a book concerning the relevance of Einstein's theory to human relations in contemporary times. lt is physics and it is philosophy. lt is a discussion about one of the greatest of all pillars of 20th century thought and science. Based on a seminar course for a mixture of science and humanities students, the approach and narrative style leads the reader towards the frontier of thinking in this farreaching subject. Sachs deals with the whole spread of relativity, starting from the early history of Galileo and Faraday, he arrives at the foundation of the special theory. There is a logical transition to the general theory while the last part of the book covers the mind-testing realms of unified field theory, Mach's principle and cosmology. The book begins with atomistic, deterministic, classical physics and goes on towards a view of continuous fields of matter and a clearer view of spacetime. The reader is led into Einstein's extension of this theory towards a unified force field; consequently the authors address the issue of the validity of linear mathematics compared with the realism of a non- linear universe.; Such arguments today are leading towards a new paradigm in science - a study and description of nonlinear natural systems especially far from equilibrium systems; their energetics and dynamics. This book should be of value to postgraduates, undergraduates, secondary students and professionals in physics and philosophy and anyone with an interest in science subjects.
A quirky, funny, and accessible blend of science and art that delves into the heart of Einstein’s theory of relativity It was a link to Albert Einstein’s 1905 paper―an early attempt at explaining his revolutionary ideas on space, time, and matter―that drew Tanya Bub into his imaginative vision of the world. What particularly struck her was how Einstein interwove words and math to create clear visuals illustrating his theories. As an artist, she naturally started doodling as she worked her way through his concepts, creating drawings that intuitively demonstrated Einstein’s core principles. In Reimagining Time, Tanya Bub teams up with her father, the distinguished physicist Jeffrey Bub, to create a quirky and accessible take on one of science’s most revolutionary discoveries. Blending original art and text, they guide readers―even nonmathematicians―through Einstein’s theory of special relativity to reveal truths about our universe: time is relative, lengths get shorter with motion, energy and mass are interchangeable, and the universe has a speed limit.
An exploration of the idea of time travel from the first account in English literature to the latest theories of such physicists as Kip Thorne and Igor Novikov. This very readable work covers a variety of topics including the history of time travel in fiction; the fundamental scientific concepts of time, spacetime, and the fourth dimension; the speculations of Einstein, Richard Feynman, Kurt Goedel, and others; time travel paradoxes, and much more.
This volume gathers the content of the courses held at the Third IDPASC School, which took place in San Martino Pinario, Hospederia and Seminario Maior, in the city of Santiago de Compostela, Galiza, Spain, from January 21st to February 2nd, 2013. This school is the annual joint program of the International Doctorate Network in Particle Physics, Astrophysics, and Cosmology (IDPASC). The purpose of the school series is to present doctoral students from different universities and laboratories in Europe and beyond with a broad range of the latest results and current state of the art in the fields of Particle Physics, Astrophysics, and Cosmology, and to further introduce them to both the questions now posed by the potentials of physics and to challenges connected with current and future experiments - in particular, with the newly available energy ranges. Following these guidelines, the content of this third edition of the IDPASC School was jointly planned by the Academic Council and by the network's International Committee, whose members ensure every year its timely formulation, keeping up with the constant evolution of these fields. The program covers a balanced range of the latest developments in these fields worldwide, with courses offered by internationally acknowledged physicists on the Basic Features of Hadronic Processes, Quantum Chromodynamics, Physics and Technology of ALICE, LHCb Physics-Parity Violation, the Higgs System in and beyond the Standard Model, Higgs Searches at the LHC, Theory and Experiments with Cosmic Rays, Numerical Methods and Data Analysis in Particle Physics, Theoretical Cosmology, and AdS/CFT Correspondence. Most of these courses were complemented by practical and discussion sessions.
Einstein said that the most incomprehensible thing about the universe is that it is comprehensible. But was he right? Can the quantum theory of fields and Einstein's general theory of relativity, the two most accurate and successful theories in all of physics, be united into a single quantum theory of gravity? Can quantum and cosmos ever be combined? In The Nature of Space and Time, two of the world's most famous physicists--Stephen Hawking (A Brief History of Time) and Roger Penrose (The Road to Reality)--debate these questions. The authors outline how their positions have further diverged on a number of key issues, including the spatial geometry of the universe, inflationary versus cyclic theories of the cosmos, and the black-hole information-loss paradox. Though much progress has been made, Hawking and Penrose stress that physicists still have further to go in their quest for a quantum theory of gravity.
Today physicists and mathematicians throughout the world are feverishly working on one of the most ambitious theories ever proposed: superstring theory. String theory is the key to the Unified Field Theory that eluded Einstein for more than thirty years. Finally, the century-old antagonism between the large and the small -General Relativity and Quantum Theory - is solved. String theory proclaims that all of the wondrous happenings in the universe, from the frantic dancing of subatomic quarks to the majestic swirling of heavenly galaxies, are reflections of one grand physical principle and manifestations of one single entity: microscopically tiny vibrating loops of energy, a billionth of a billionth the size of an atom.
Time is an illusion. Although the laws of physics create a powerful impression that time is flowing, in fact there are only timeless 'nows'. In THE END OF TIME, the British theoretical physicist Julian Barbour describes the coming revolution in our understanding of the world: a quantum theory of the universe that brings together Einstein's general theory of relativity, which denies the existence of a unique time, and quantum mechanics, which demands one. Barbour believes that only the most radical of ideas can resolve the conflict between these two theories: that there is, quite literally, no time at all. This is the first full-length account of the crisis in our understanding that has enveloped quantum cosmology. Unifying thinking that has never been brought together before in a book for the general reader, Barbour reveals the true architecture of the universe and demonstrates how physics is coming up sharp against the extraordinary possibility that the sense of time passing emerges from a universe that is timeless. The heart of the book is the author's lucid description of how a world of stillness can appear to be teeming with motion: in this timeless world where all possible instants coexist, complex mathematical rules of quantum mechanics bind together a special selection of these instants in a coherent order that consciousness perceives as the flow of time. Finally, in a lucid and eloquent epilogue, the author speculates on the philosophical implications of his theory: Does free will exist? Is time travel possible? How did the universe begin? Where is heaven? Does the denial of time make life meaningless? Written with exceptional clarity and elegance, this profound and original work presents a dazzlingly powerful argument that all will be able to follow, but no-one with an interest in the workings of the universe will be able to ignore.
A sweeping account of the century of experimentation that confirmed Einstein's general theory of relativity, bringing to life the science and scientists at the origins of relativity, the development of radio telescopes, the discovery of black holes and quasars, and the still unresolved place of gravity in quantum theory. Albert Einstein did nothing of note on May 29, 1919, yet that is when he became immortal. On that day, astronomer Arthur Eddington and his team observed a solar eclipse and found something extraordinary: gravity bends light, just as Einstein predicted. The finding confirmed the theory of general relativity, fundamentally changing our understanding of space and time. A century later, another group of astronomers is performing a similar experiment on a much larger scale. The Event Horizon Telescope, a globe-spanning array of radio dishes, is examining space surrounding Sagittarius A*, the supermassive black hole at the center of the Milky Way. As Ron Cowen recounts, the foremost goal of the experiment is to determine whether Einstein was right on the details. Gravity lies at the heart of what we don't know about quantum mechanics, but tantalizing possibilities for deeper insight are offered by black holes. By observing starlight wrapping around Sagittarius A*, the telescope will not only provide the first direct view of an event horizon-a black hole's point of no return-but will also enable scientists to test Einstein's theory under the most extreme conditions. Gravity's Century shows how we got from the pivotal observations of the 1919 eclipse to the Event Horizon Telescope, and what is at stake today. Breaking down the physics in clear and approachable language, Cowen makes vivid how the quest to understand gravity is really the quest to comprehend the universe.
E = mc2 and the Periodic Table . . .
Spacetime and Geometry is an introductory textbook on general relativity, specifically aimed at students. Using a lucid style, Carroll first covers the foundations of the theory and mathematical formalism, providing an approachable introduction to what can often be an intimidating subject. Three major applications of general relativity are then discussed: black holes, perturbation theory and gravitational waves, and cosmology. Students will learn the origin of how spacetime curves (the Einstein equation) and how matter moves through it (the geodesic equation). They will learn what black holes really are, how gravitational waves are generated and detected, and the modern view of the expansion of the universe. A brief introduction to quantum field theory in curved spacetime is also included. A student familiar with this book will be ready to tackle research-level problems in gravitational physics. |
You may like...
The Biodiesel Handbook, Second Edition
Gerhard Knothe, Jon Van Gerpen
Paperback
R3,085
Discovery Miles 30 850
Database Systems: The Complete Book…
Hector Garcia-Molina, Jeffrey Ullman, …
Paperback
29th European Symposium on Computer…
Anton A Kiss, Edwin Zondervan, …
Hardcover
R11,317
Discovery Miles 113 170
Revealing the Most Energetic Light from…
David Carreto Fidalgo
Hardcover
R2,663
Discovery Miles 26 630
Behind Prison Walls - Unlocking a Safer…
Edwin Cameron, Rebecca Gore, …
Paperback
Physics on Your Feet: Berkeley Graduate…
Dmitry Budker, Alexander O. Sushkov
Hardcover
R1,649
Discovery Miles 16 490
|