![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Relativity physics > General
Einstein's general theory of relativity can be a notoriously difficult subject for students approaching it for the first time, with arcane mathematical concepts such as connection coefficients and tensors adorned with a forest of indices. This book is an elementary introduction to Einstein's theory and the physics of curved space-times that avoids these complications as much as possible. Its first half describes the physics of black holes, gravitational waves and the expanding Universe, without using tensors. Only in the second half are Einstein's field equations derived and used to explain the dynamical evolution of the early Universe and the creation of the first elements. Each chapter concludes with problem sets and technical mathematical details are given in the appendices. This short text is intended for undergraduate physics students who have taken courses in special relativity and advanced mechanics.
With applications in quantum field theory, general relativity and elementary particle physics, this three-volume work studies the invariance of differential operators under Lie algebras, quantum groups and superalgebras. This second volume covers quantum groups in their two main manifestations: quantum algebras and matrix quantum groups. The exposition covers both the general aspects of these and a great variety of concrete explicitly presented examples. The invariant q-difference operators are introduced mainly using representations of quantum algebras on their dual matrix quantum groups as carrier spaces. This is the first book that covers the title matter applied to quantum groups. Contents Quantum Groups and Quantum Algebras Highest-Weight Modules over Quantum Algebras Positive-Energy Representations of Noncompact Quantum Algebras Duality for Quantum Groups Invariant q-Difference Operators Invariant q-Difference Operators Related to GLq(n) q-Maxwell Equations Hierarchies
This textbook introduces the topic of special relativity, with a particular emphasis upon light-matter interaction and the production of light in plasma. The physics of special relativity is intuitively developed and related to the radiative processes of light. The book reviews the underlying theory of special relativity, before extending the discussion to applications frequently encountered by postgraduates and researchers in astrophysics, high power laser interactions and the users of specialized light sources, such as synchrotrons and free electron lasers. A highly pedagogical approach is adopted throughout, and numerous exercises are included within each chapter to reinforce the presentation of key concepts and applications of the material.
The Springer Handbook of Spacetime is dedicated to the ground-breaking paradigm shifts embodied in the two relativity theories, and describes in detail the profound reshaping of physical sciences they ushered in. It includes in a single volume chapters on foundations, on the underlying mathematics, on physical and astrophysical implications, experimental evidence and cosmological predictions, as well as chapters on efforts to unify general relativity and quantum physics. The Handbook can be used as a desk reference by researchers in a wide variety of fields, not only by specialists in relativity but also by researchers in related areas that either grew out of, or are deeply influenced by, the two relativity theories: cosmology, astronomy and astrophysics, high energy physics, quantum field theory, mathematics, and philosophy of science. It should also serve as a valuable resource for graduate students and young researchers entering these areas, and for instructors who teach courses on these subjects. The Handbook is divided into six parts. Part A: Introduction to Spacetime Structure. Part B: Foundational Issues. Part C: Spacetime Structure and Mathematics. Part D: Confronting Relativity theories with observations. Part E: General relativity and the universe. Part F: Spacetime beyond Einstein.
This introduction to automorphic forms on adelic groups G(A) emphasises the role of representation theory. The exposition is driven by examples, and collects and extends many results scattered throughout the literature, in particular the Langlands constant term formula for Eisenstein series on G(A) as well as the Casselman-Shalika formula for the p-adic spherical Whittaker function. This book also covers more advanced topics such as spherical Hecke algebras and automorphic L-functions. Many of these mathematical results have natural interpretations in string theory, and so some basic concepts of string theory are introduced with an emphasis on connections with automorphic forms. Throughout the book special attention is paid to small automorphic representations, which are of particular importance in string theory but are also of independent mathematical interest. Numerous open questions and conjectures, partially motivated by physics, are included to prompt the reader's own research.
Applications of quantum field theoretical methods to gravitational physics, both in the semiclassical and the full quantum frameworks, require a careful formulation of the fundamental basis of quantum theory, with special attention to such important issues as renormalization, quantum theory of gauge theories, and especially effective action formalism. The first part of this graduate textbook provides both a conceptual and technical introduction to the theory of quantum fields. The presentation is consistent, starting from elements of group theory, classical fields, and moving on to the effective action formalism in general gauge theories. Compared to other existing books, the general formalism of renormalization in described in more detail, and special attention paid to gauge theories. This part can serve as a textbook for a one-semester introductory course in quantum field theory. In the second part, we discuss basic aspects of quantum field theory in curved space, and perturbative quantum gravity. More than half of Part II is written with a full exposition of details, and includes elaborated examples of simplest calculations. All chapters include exercises ranging from very simple ones to those requiring small original investigations. The selection of material of the second part is done using the "must-know" principle. This means we included detailed expositions of relatively simple techniques and calculations, expecting that the interested reader will be able to learn more advanced issues independently after working through the basic material, and completing the exercises.
Universally recognized as bringing about a revolutionary
transformation of the notions of space, time, and motion in
physics, Einstein's theory of gravitation, known as "general
relativity," was also a defining event for 20th century philosophy
of science. During the decisive first ten years of the theory's
existence, two main tendencies dominated its philosophical
reception. This book is an extended argument that the path actually
taken, which became logical empiricist philosophy of science,
greatly contributed to the current impasse over realism, whereas
new possibilities are opened in revisiting and reviving the spirit
of the more sophisticated tendency, a cluster of viewpoints broadly
termed transcendental idealism, and furthering its articulation. It
also emerges that Einstein, while paying lip service to the
emerging philosophy of logical empiricism, ended up siding de facto
with the latter tendency.
Aimed at both physics students and non-science majors, this unique book explains Einstein's special theory of relativity pictorially, using diagrams rather than equations. The diagrams guide the reader, step-by-step, from the basics of relativity to advanced topics including the addition of velocities, Lorentz contraction, time dilation, the twin paradox, Doppler shift, and Einstein's famous equation E=mc(2). The distinctive figures throughout the book enable the reader to visualize the theory in a way that cannot be fully conveyed through equations alone. The illustrative explanations in this book maintain the logic and rigour necessary for physics students, yet are simple enough to be understood by non-scientists. The book also contains entertaining problems which challenge the reader's understanding of the materials covered.
Time is an illusion. Although the laws of physics create a powerful impression that time is flowing, in fact there are only timeless 'nows'. In THE END OF TIME, the British theoretical physicist Julian Barbour describes the coming revolution in our understanding of the world: a quantum theory of the universe that brings together Einstein's general theory of relativity, which denies the existence of a unique time, and quantum mechanics, which demands one. Barbour believes that only the most radical of ideas can resolve the conflict between these two theories: that there is, quite literally, no time at all. This is the first full-length account of the crisis in our understanding that has enveloped quantum cosmology. Unifying thinking that has never been brought together before in a book for the general reader, Barbour reveals the true architecture of the universe and demonstrates how physics is coming up sharp against the extraordinary possibility that the sense of time passing emerges from a universe that is timeless. The heart of the book is the author's lucid description of how a world of stillness can appear to be teeming with motion: in this timeless world where all possible instants coexist, complex mathematical rules of quantum mechanics bind together a special selection of these instants in a coherent order that consciousness perceives as the flow of time. Finally, in a lucid and eloquent epilogue, the author speculates on the philosophical implications of his theory: Does free will exist? Is time travel possible? How did the universe begin? Where is heaven? Does the denial of time make life meaningless? Written with exceptional clarity and elegance, this profound and original work presents a dazzlingly powerful argument that all will be able to follow, but no-one with an interest in the workings of the universe will be able to ignore.
Dynamic Fields and Waves concentrates on electric and magnetic fields that vary with time, including light and electromagnetic waves. Written for an undergraduate introductory course but equally suitable for self-study, this practical, illustrated book discusses waves in general and light waves in particular, together with optical instruments, such as telescopes and microscopes, and electrical devices, such as generators and transformers. It also explores Einstein's special theory of relativity, which gives the most basic insight into space and time.
Yet over the past few decades, physicists have discovered a phenomenon that operates outside the confines of space and time: nonlocality - the ability of two particles to act in harmony no matter how far apart they may be. If space isn't what we thought it was, then what is it? In Spooky Action at a Distance, the award-winning journalist George Musser sets out to answer that question. He guides us on an epic journey into the lives of experimental physicists observing particles acting in tandem, astronomers finding galaxies that look statistically identical, and cosmologists hoping to unravel the paradoxes surrounding the big bang. He traces the contentious debates over nonlocality through major discoveries and disruptions of the twentieth century and shows how scientists faced with the same undisputed experimental evidence develop wildly different explanations for that evidence. Their conclusions challenge our understanding of the origins of the universe - and they suggest a new grand unified theory of physics.
Providing a comprehensive exposition of the transactional interpretation (TI) of quantum mechanics, this book sheds new light on long-standing problems in quantum theory such as the physical meaning of the 'Born Rule' for the probabilities of measurement results, and demonstrates the ability of TI to solve the measurement problem of quantum mechanics. It provides robust refutations of various objections and challenges to TI, such as Maudlin's inconsistency challenge, and explicitly extends TI into the relativistic domain, providing new insight into the basic compatibility of TI with relativity and the meaning of 'virtual particles.' It breaks new ground in approaches to interpreting quantum theory and presents a compelling new ontological picture of quantum reality. This substantially revised and updated second edition is ideal for researchers and graduate students interested in the philosophy of physics and the interpretation of quantum mechanics.
This thorough introduction to Einstein's special theory of relativity is suitable for anyone with a minimum of one year of undergraduate physics with calculus. The authors cover every aspect of special relativity, including the impact of special relativity in quantum theory, with an introduction to relativistic quantum mechanics and quantum field theory. They also discuss the group theory of the Lorentz group, supersymmetry, and such cutting-edge topics as general relativity, the standard model of elementary particles and its extensions, and superstring theory, giving a survey of important unsolved problems. The book is accompanied by an interactive CD-ROM illustrating classic problems in relativity involving motion.
This book features a comprehensive review of experimental gravitation. It is a textbook based on the graduate courses on "Experimental Gravitation" given by the authors at their respective universities in Rome: Sapienza and Tor Vergata. A number of different research topics in the field are covered: from the torsion pendulum (still today the tool of choice for measuring small forces or torques) to the large interferometers developed to observe gravitational waves. Techniques that are still under development are also discussed, like the pulsar timing array and space-based detectors of the future. This book is written by experimentalists for experimentalists. While the background physics is summarized for less experienced readers, the emphasis is certainly on experimental verifications: the strategy, the apparatuses, the data analysis and the results of many cornerstone experiments are analyzed and discussed in depth. This textbook serves as a useful resource for both graduate students and professionals working in the increasingly vibrant field of experimental gravity.
This compact yet informative Guide presents an accessible route through Special Relativity, taking a modern axiomatic and geometrical approach. It begins by explaining key concepts and introducing Einstein's postulates. The consequences of the postulates - length contraction and time dilation - are unravelled qualitatively and then quantitatively. These strands are then tied together using the mathematical framework of the Lorentz transformation, before applying these ideas to kinematics and dynamics. This volume demonstrates the essential simplicity of the core ideas of Special Relativity, while acknowledging the challenges of developing new intuitions and dealing with the apparent paradoxes that arise. A valuable supplementary resource for intermediate undergraduates, as well as independent learners with some technical background, the Guide includes numerous exercises with hints and notes provided online. It lays the foundations for further study in General Relativity, which is introduced briefly in an appendix.
"General Relativity Without Calculus" offers a compact but mathematically correct introduction to the general theory of relativity, assuming only a basic knowledge of high school mathematics and physics. Targeted at first year undergraduates (and advanced high school students) who wish to learn Einstein's theory beyond popular science accounts, it covers the basics of special relativity, Minkowski space-time, non-Euclidean geometry, Newtonian gravity, the Schwarzschild solution, black holes and cosmology. The quick-paced style is balanced by over 75 exercises (including full solutions), allowing readers to test and consolidate their understanding.
Features: Authored by experienced lecturers in Particle Physics, Quantum Field Theory, Nuclear Physics, and General Relativity Provides an accessible introduction to Particle Physics and Cosmology
The third volume in Leonard Susskind's one-of-a-kind physics series cracks open Einstein's special relativity and field theory In the first two books in his wildly popular The Theoretical Minimum series, world-class physicist Leonard Susskind provided a brilliant first course in classical and quantum mechanics, offering readers not an oversimplified introduction, but the real thing - everything you need to start doing physics, and nothing more. Now, thankfully, Susskind and his former student Art Friedman are back, this time to introduce readers to special relativity and classical field theory. At last, waves, forces and particles will be demystified. Using their typical brand of relatively simple maths, enlightening sketches and the same fictional counterparts, Art and Lenny, Special Relativity and Classical Field Theory takes us on an enlightening journey through a world now governed by the laws of special relativity. Starting in their new watering hole, Hermann's Hideaway, with a lesson on relativity, Art and Lenny walk us through the complexities of Einstein's famous theory. Combining rigor with humour, Susskind and Friedman guarantee that Special Relativity and Classical Field Theory will become part of the reader's physics toolbox.
Einstein's theories of special relativity and general relativity form a core part of today's undergraduate (or Masters-level) physics curriculum. This is a supplementary problem book or student's manual, consisting of 150 problems in each of special and general relativity. The problems, which have been developed, tested and refined by the authors over the past two decades, are a mixture of short-form and multi-part extended problems, with hints provided where appropriate. Complete solutions are elaborated for every problem, in a different section of the book; some solutions include brief discussions on their physical or historical significance. Designed as a companion text to complement a main relativity textbook, it does not assume access to any specific textbook. This is a helpful resource for advanced students, for self-study, a source of problems for university teaching assistants, or as inspiration for instructors and examiners constructing problems for their lectures, homework or exams.
Einstein's theories of special relativity and general relativity form a core part of today's undergraduate (or Masters-level) physics curriculum. This is a supplementary problem book or student's manual, consisting of 150 problems in each of special and general relativity. The problems, which have been developed, tested and refined by the authors over the past two decades, are a mixture of short-form and multi-part extended problems, with hints provided where appropriate. Complete solutions are elaborated for every problem, in a different section of the book; some solutions include brief discussions on their physical or historical significance. Designed as a companion text to complement a main relativity textbook, it does not assume access to any specific textbook. This is a helpful resource for advanced students, for self-study, a source of problems for university teaching assistants, or as inspiration for instructors and examiners constructing problems for their lectures, homework or exams.
The 20th century gave us two great theories of physics: the general theory of relativity, which describes the behaviour of things on a very large scale, including the entire Universe; and quantum theory, which describes the behaviour of things on a very small scale, the sub-atomic world. The refusal of the Universe to reveal an equation that combines these two great ideas has caused some people to doubt our whole understanding of physics. In this landmark new book, popular science master John Gribbin tells the dramatic story of the quest that has led us to discover the true age of the Universe (13.8 billion years) and the stars (just a little bit younger). This discovery, Gribbin argues, is one of humankind's greatest achievements and shows us that physics is on the right track to finding the 'Theory of Everything'. 13.8 provides an eye-opening look at this cutting-edge area of modern cosmology and physics, and tells the compelling story of what modern science has achieved - and what it can still achieve.
An exploration of the idea of time travel from the first account in English literature to the latest theories of such physicists as Kip Thorne and Igor Novikov. This very readable work covers a variety of topics including the history of time travel in fiction; the fundamental scientific concepts of time, spacetime, and the fourth dimension; the speculations of Einstein, Richard Feynman, Kurt Goedel, and others; time travel paradoxes, and much more.
This volume gathers the content of the courses held at the Third IDPASC School, which took place in San Martino Pinario, Hospederia and Seminario Maior, in the city of Santiago de Compostela, Galiza, Spain, from January 21st to February 2nd, 2013. This school is the annual joint program of the International Doctorate Network in Particle Physics, Astrophysics, and Cosmology (IDPASC). The purpose of the school series is to present doctoral students from different universities and laboratories in Europe and beyond with a broad range of the latest results and current state of the art in the fields of Particle Physics, Astrophysics, and Cosmology, and to further introduce them to both the questions now posed by the potentials of physics and to challenges connected with current and future experiments - in particular, with the newly available energy ranges. Following these guidelines, the content of this third edition of the IDPASC School was jointly planned by the Academic Council and by the network's International Committee, whose members ensure every year its timely formulation, keeping up with the constant evolution of these fields. The program covers a balanced range of the latest developments in these fields worldwide, with courses offered by internationally acknowledged physicists on the Basic Features of Hadronic Processes, Quantum Chromodynamics, Physics and Technology of ALICE, LHCb Physics-Parity Violation, the Higgs System in and beyond the Standard Model, Higgs Searches at the LHC, Theory and Experiments with Cosmic Rays, Numerical Methods and Data Analysis in Particle Physics, Theoretical Cosmology, and AdS/CFT Correspondence. Most of these courses were complemented by practical and discussion sessions. |
You may like...
Agent Technologies and Web Engineering…
Ghazi Alkhatib, David C. Rine
Hardcover
R4,934
Discovery Miles 49 340
|