![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Relativity physics > General
This book focuses on the phenomena of inertia and gravitation, one objective being to shed some new light on the basic laws of gravitational interaction and the fundamental nature and structures of spacetime. Chapter 1 is devoted to an extensive, partly new analysis of the law of inertia. The underlying mathematical and geometrical structure of Newtonian spacetime is presented from a four-dimensional point of view, and some historical difficulties and controversies - in particular the concepts of free particles and straight lines - are critically analyzed, while connections to projective geometry are also explored. The relativistic extensions of the law of gravitation and its intriguing consequences are studied in Chapter 2. This is achieved, following the works of Weyl, Ehlers, Pirani and Schild, by adopting a point of view of the combined conformal and projective structure of spacetime. Specifically, Mach's fundamental critique of Newton's concepts of 'absolute space' and 'absolute time' was a decisive motivation for Einstein's development of general relativity, and his equivalence principle provided a new perspective on inertia. In Chapter 3 the very special mathematical structure of Einstein's field equations is analyzed, and some of their remarkable physical predictions are presented. By analyzing different types of dragging phenomena, Chapter 4 reviews to what extent the equivalence principle is realized in general relativity - a question intimately connected to the 'new force' of gravitomagnetism, which was theoretically predicted by Einstein and Thirring but which was only recently experimentally confirmed and is thus of current interest.
This volume presents the lectures of the nineteenth Canary Islands Winter School, dedicated to the Cosmic Microwave Background (CMB). This relict radiation from the very early Universe provides a fundamental tool for precision cosmology. Prestigious researchers in the field present a comprehensive overview of current knowledge of the CMB, reviewing the theoretical foundations, the main observational results and the most advanced statistical techniques used in this discipline. The lectures give coverage from the basic principles to the most recent research results, reviewing state of the art observational and statistical analysis techniques. The impact of new experiments and the constraints imposed on cosmological parameters are emphasized and put into the broader context of research in cosmology. This is an important resource for both graduate students and experienced researchers, revealing the spectacular progress that has been made in the study of the CMB within the last decade.
The Golden Oldies series of the journal General Relativity and Gravitation reprints important papers in general relativity theory that were published 30 or more years ago and are either hard to get hold of, or were originally printed in a language other than English. They play a key part in making these important papers readily accessible today, in the language that has now become the lingua franca of scientific publication. The value of this reprinting is enhanced by an accompanying editorial note for each paper, which briefly explains the significance of the work and where it has subsequently led to, together with a biographical note about the author or authors. This volume presents a selection of 14 rarities among the Golden Oldies grouped in the three categories "Basic results in differential geometry and general relativity," "Discussion of physical effects" and "Basic exact solutions and their interpretation." Researchers in the field will appreciate having these important papers collected in one book for the first time. Reprinted from the journal General Relativity and Gravitation.
This book is an introduction to the theories of Special and General Relativity. The target audience are physicists, engineers and applied scientists who are looking for an understandable introduction to the topic - without too much new mathematics. The fundamental equations of Einstein's theory of Special and General Relativity are derived using matrix calculus, without the help of tensors. This feature makes the book special and a valuable tool for scientists and engineers with no experience in the field of tensor calculus. In part I the foundations of Special Relativity are developed, part II describes the structure and principle of General Relativity. Part III explains the Schwarzschild solution of spherical body gravity and examines the "Black Hole" phenomenon. Any necessary mathematical tools are user friendly provided, either directly in the text or in the appendices.
This is the third edition of a well-received textbook on modern physics theory. This book provides an elementary but rigorous and self-contained presentation of the simplest theoretical framework that will meet the needs of undergraduate students. In addition, a number of examples of relevant applications and an appropriate list of solved problems are provided.Apart from a substantial extension of the proposed problems, the new edition provides more detailed discussion on Lorentz transformations and their group properties, a deeper treatment of quantum mechanics in a central potential, and a closer comparison of statistical mechanics in classical and in quantum physics. The first part of the book is devoted to special relativity, with a particular focus on space-time relativity and relativistic kinematics. The second part deals with Schroedinger's formulation of quantum mechanics. The presentation concerns mainly one-dimensional problems, but some three-dimensional examples are discussed in detail. The third part addresses the application of Gibbs' statistical methods to quantum systems and in particular to Bose and Fermi gases.
This book, now in its second edition, provides an introductory course on theoretical particle physics with the aim of filling the gap that exists between basic courses of classical and quantum mechanics and advanced courses of (relativistic) quantum mechanics and field theory. After a concise but comprehensive introduction to special relativity, key aspects of relativistic dynamics are covered and some elementary concepts of general relativity introduced. Basics of the theory of groups and Lie algebras are explained, with discussion of the group of rotations and the Lorentz and Poincare groups. In addition, a concise account of representation theory and of tensor calculus is provided. Quantization of the electromagnetic field in the radiation range is fully discussed. The essentials of the Lagrangian and Hamiltonian formalisms are reviewed, proceeding from systems with a finite number of degrees of freedom and extending the discussion to fields. The final four chapters are devoted to development of the quantum field theory, ultimately introducing the graphical description of interaction processes by means of Feynman diagrams. The book will be of value for students seeking to understand the main concepts that form the basis of contemporary theoretical particle physics and also for engineers and lecturers. An Appendix on some special relativity effects is added.
One of the ?rst Computer Science sites in Italy, in recent years, the Friuli region has become a very active hub in Computational Physics and other applications of Informatics to Human and Natural Sciences. In particular the University of Udine has developed a tradition in innovative cross-disciplinary research areas involving Computer Science and Physics, providing digital tools for laboratories such as NASA and CERN. The sixth International Symposium "Frontiers of Fundamental and Compu- tional Physics" (FFP6) aimed at providing a platform for a wide range of phy- cists to meet and share thoughts on the latest trends in various research areas including High Energy Physics, Theoretical Physics, Gravitation and Cosmology, Astrophysics, Condensed Matter Physics, Fluid Mechanics. Such frontier lines were uni?ed by the use of computers as an, often primary, research instrument, or dealing with issues related to information theory. The present Sixth International Symposium in the series wasorganizedatthe UniversityofUdine,Italyfrom26thto29th ofSeptember2004. TheUniversity of in the Udine and the B. M. Birla Science Centre in Hyderabad have collaborated organization of this Symposium and the edition of these Proceedings, under the auspices of their joint initiative the International Institute of ApplicableMat- maticsand InformationSciences. ThecontributionsintheProceedingsaregrouped as follows: * Field Theory, Relativity and Cosmology * Foundations of Physics and of Information Sciences * Nuclear and High-Energy Particle Physics and Astrophysics; Astroparticle Physics * Complex Systems; Fluid Mechanics * New Approaches to Physics Teaching ThisSymposiumhadanattendanceofover100participants. Therewere63- pers/presentations, including 4 introductory invited lectures delivered by the - belLaureatesL. CooperandG. 'tHooft,andbytheeminentphysicistsY.
After about a century of success, physicists feel the need to probe the limits of validity of special-relativity base theories. This book is the outcome of a special seminar held on this topic. The authors gather in a single volume an extensive collection of introductions and reviews of the various facets involved, and also includes detailed discussion of philosophical and historical aspects.
Currently under construction in Northern Chile, the Atacama Large Millimeter Array (ALMA) is the most ambitious astronomy facility under construction. This book describes the enormous capabilities of ALMA, the state of the project, and most notably the scientific prospects of such a unique facility. The book includes reviews and recent results on most hot topics of modern astronomy. It looks forward to the revolutionary results that are likely to be obtained with ALMA.
Are we living in the "golden age" of cosmology? Are we close to understanding the nature of the unknown ingredients of the currently most accepted cosmological model and the physics of the early Universe? Or are we instead approaching a paradigm shift? What is dark matter and does it exist? How is it distributed around galaxies and clusters? Is the scientific community open to alternative ideas that may prompt a new scientific revolution - as the Copernican revolution did in Galileo's time? Do other types of supernovae exist that can be of interest for cosmology? Why have quasars never been effectively used as standard candles? Can you tell us about the scientific adventure of COBE? How does the extraction of the Cosmic Microwave Background anisotropy depend on the subtraction of the various astrophysical foregrounds? These, among many others, are the astrophysical, philosophical and sociological questions surrounding modern cosmology and the scientific community that Mauro D'Onofrio and Carlo Burigana pose to some of the most prominent cosmologists of our time. Triggered by these questions and in the spirit of Galileo's book "Dialogue Concerning the Two Chief World Systems" the roughly 40 interview partners reply in the form of essays, with a critical frankness not normally found in reviews, monographs or textbooks.
A very attractive feature of the theory of general relativity is that it is a perfectexampleofa"falsi?able"theory:notunableparameterispresentinthe theory and therefore even a single experiment incompatible with a prediction of the theory would immediately lead to its inevitable rejection, at least in the physical regime of application of the aforementioned experiment. This fact provides additional scienti?c value to one of the boldest and most fascinating achievements of the human intellect ever, and motivates a wealth of e?orts in designing and implementing tests aimed at the falsi?cation of the theory. The ?rst historical test on the theory has been the de?ection of light gr- ing the solar surface (Eddington 1919): the compatibility of the theory with this ?rst experiment together with its ability to explain the magnitude of the perihelion advance of Mercury contributed strongly to boost acceptance and worldwideknowledge.However,technologicallimitations preventedphysicists from setting up more constraining tests for several decades after the formu- tion of the theory. In fact, a relevant problem with experimental general r- ativity is that the predicted deviations from the Newtonian theory of gravity areverysmallwhentheexperimentsarecarriedoutinterrestriallaboratories.
The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology and the physics of the Big Bang and inflation.
This richly illustrated book is unique in bringing Einstein's relativity to a higher level for the non-specialist than has ever been attempted before, using nothing more than grade-school algebra. Bondi's approach with spacetime diagrams is simplified and expanded, clarifying the famous asymmetric aging-of-twins paradox. Einstein's theory of gravity, general relativity, is simplified for the reader using spacetime diagrams. The theory is applied to important topics in physics such as gravitational waves, gravitational collapse and black holes, time machines, the relationship to the quantum world, galactic motions and cosmology.
17 readable articles give a thorough and self-contained overview of recent developments in relativistic gravity research. The subjects covered are: gravitational lensing, the general relativistic n-body problem, observable effects in the solar system, gravitational waves and their interferometric detection, very-long-baseline interferometry, international atomic time, lunar laser- ranging measurements, measurement ofthe gravitomagnetic field of the Earth, fermion and boson stars and black holes with hair, rapidly rotating neutron stars, matter wave interferometry, and the laboratory test of Newton's law of gravity.Any scientist interested in experimentally or observatio- nally oriented relativistic gravity will read the book with profit. In addition, it is perfectly suited as a complementary text for courses on general relativity and relativistic astrophysics.
The concept of time has fascinated humanity throughout recorded history, and it remains one of the biggest mysteries in science and philosophy. Time is clearly one of the fundamental building blocks of the universe and thus a deeper understanding of nature at a fundamental level also demands a comprehension of time. Furthermore, the origins of the universe are closely intertwined with the puzzle of time: Did time emerge at the Big Bang? Why does the arrow of time 'conspire' with the order of the initial state of the universe? This book addresses many of the most important questions about time: What is time, and is it fundamental or emergent? Why is there such an arrow of time, closely related to the initial state of the universe, and why do the cosmic, thermodynamic and other arrows agree? These issues are discussed here by leading experts, and each offers a new perspective on the debate. Their contributions delve into the most difficult research topic in physics, also describing the latest cutting edge research on the subject. The book also offers readers a comparison between the different outlooks of philosophy, physics and cosmology on the puzzle of time. This volume is intended to be useful for research purposes, but most chapters are also accessible to a more general audience of scientifically educated readers looking for deeper insights.
This book is aimed at theoretical and mathematical physicists and mathematicians interested in modern gravitational physics. I have thus tried to use language familiar to readers working on classical and quantum gravity, paying attention both to difficult calculations and to existence theorems, and discussing in detail the current literature. The first aim of the book is to describe recent work on the problem of boundary conditions in one-loop quantum cosmology. The motivation of this research was to under stand whether supersymmetric theories are one-loop finite in the presence of boundaries, with application to the boundary-value problemsoccurring in quantum cosmology. Indeed, higher-loop calculations in the absence of boundaries are already available in the litera ture, showing that supergravity is not finite. I believe, however, that one-loop calculations in the presence of boundaries are more fundamental, in that they provide a more direct check of the inconsistency of supersymmetric quantum cosmology from the perturbative point of view. It therefore appears that higher-order calculations are not strictly needed, if the one-loop test already yields negative results. Even though the question is not yet settled, this research has led to many interesting, new applications of areas of theoretical and mathematical physics such as twistor theory in flat space, self-adjointness theory, the generalized Riemann zeta-function, and the theory of boundary counterterms in super gravity. I have also compared in detail my work with results by other authors, explaining, whenever possible, the origin of different results, the limits of my work and the unsolved problems."
This book provides a largely self-contained and broadly accessible exposition on two cosmological applications of algebraic quantum field theory (QFT) in curved spacetime: a fundamental analysis of the cosmological evolution according to the Standard Model of Cosmology; and a fundamental study of the perturbations in inflation. The two central sections of the book dealing with these applications are preceded by sections providing a pedagogical introduction to the subject. Introductory material on the construction of linear QFTs on general curved spacetimes with and without gauge symmetry in the algebraic approach, physically meaningful quantum states on general curved spacetimes, and the backreaction of quantum fields in curved spacetimes via the semiclassical Einstein equation is also given. The reader should have a basic understanding of General Relativity and QFT on Minkowski spacetime, but no background in QFT on curved spacetimes or the algebraic approach to QFT is required.>
The composition of the most remote objects brought into view by the Hubble telescope can no longer be reconciled with the nucleogenesis of standard cosmology and the alternative explanation, in terms of the -Cold-Dark-Matter model, has no recognizable chemical basis. A more rational scheme, based on the chemistry and periodicity of atomic matter, opens up an exciting new interpretation of the cosmos in terms of projective geometry and general relativity. The response of atomic structure to environmental pressure predicts non-Doppler cosmical redshifts and equilibrium nucleogenesis by -particle addition, in accord with observed periodic variation of nuclear abundance. Inferred cosmic self similarity elucidates the Bode -Titius law, general commensurability in the solar system and the occurrence of quantum phenomena on a cosmic scale. The generalized periodic function involves both matter and anti-matter in an involuted mapping to a closed projective plane. This topology ensures the same symmetrical balance in a chiral universe, wrapped around an achiral vacuum interface, without singularities. A new cosmology emerges, based on the theory of projective relativ ity, presented here as a translation of Veblen's original German text. Not only does it provide a unification of gravity, electromagnetism and quantum theory, through gauge invariance, but also supports the solution of the gravitational field equations, obtained by Goedel for a rotating universe. The appearance of an Einstein-Rosen bridge as outlet from a black hole, into conjugate anti-space, accounts for globular clusters, quasars, cosmic radiation, -ray bursters, pulsars, radio sources and other re gions of plasma activity. The effects of a multiply-connected space-time manifold on observa tions in an Euclidean tangent space are unpredictable and a complete re-assessment of the size and structure of the universe is indicated. The target readership includes scientists, as well as non-scientists - everybody with a scientific or philosophical interest in cosmology and, especially those cosmologists and mathematicians with the ability to recast the crude ideas presented here into appropriate mathematical models.
A collection of sixteen coordinated reviews on the origins of large-scale magnetic fields in the Universe, this book discusses magnetic fields in all relevant astrophysical contexts, from the interstellar medium to the scales of galaxies and clusters of galaxies. Magnetic fields are described in their very diverse environments, from stellar winds to galactic haloes and astrophysical jets; together with the roles they play in forming the structures and shaping the dynamics of these objects. Both observational evidence and its theoretical interpretations are covered up to the largest scales in the Universe. The authors are all leading scientists in their fields, making this book an authoritative, up-to-date and enduring contribution to astrophysics. This volume is aimed at graduate students and researchers in astrophysics. Previously published in Space Science Reviews journal, Vol. 166/1-4 and Vol. 169/1-4, 2012.
The search for a quantum gravity theory, a theory expected to combine the principles of general relativity and quantum theory, has led to some of the most deepest and most difficult conceptual and mathematical questions of modern physics. The present book, addressing these issues in the framework of recent versions of canonical quantization, is the first to present coherently the background for their understanding. Starting with an analysis of the structure of constrained systems and the problems of their quantization, it discusses the canonical formulation of classical relativity from different perspectives and leads to recent applications of canonical methods to create a quantum theory of gravity. The book aims to make accessible the most fundamental problems and to stimulate work in this field.
General relativity is a cornerstone of modern physics, and is of major importance in its applications to cosmology. Plebanski and Krasinski are experts in the field and in this book they provide a thorough introduction to general relativity, guiding the reader through complete derivations of the most important results. Providing coverage from a unique viewpoint, geometrical, physical and astrophysical properties of inhomogeneous cosmological models are all systematically and clearly presented, allowing the reader to follow and verify all derivations. For advanced undergraduates and graduates in physics and astronomy, this textbook will enable students to develop expertise in the mathematical techniques necessary to study general relativity.
This book is based upon lectures presented in the summer of 2009 at the INFN-Laboratori Nazionali di Frascati School on Attractor Mechanism, directed by Stefano Bellucci. The symposium included such prestigious lecturers as S. Ferrara, G. Dall'Agata, J.F. Morales, J. Simon and M. Trigiante. All lectures were given at a pedagogical, introductory level, which is reflected in the specific "flavor" of this volume. The book also benefits from extensive discussions about, and the related reworking of, the various contributions. It is the fifth volume in a series of books on the general topics of supersymmetry, supergravity, black holes and the attractor mechanism.
THE EDITORS: DAVID L. BLOCK AND KENNETH C. FREEMAN (SOC CO-CHAIRS), IVANIO PUERARI, ROBERT GROESS AND LIZ K. BLOCK 1. Harvard College Observatory, 1958 The past century has truly brought about an explosive period of growth and discovery for the physical sciences as a whole, and for astronomy in particular. Galaxy morphology has reached a renaissance . . The year: 1958. The date: October 1. The venue: Harvard College Observatory. The lecturer: Walter Baade. With amazing foresight, Baade penned these words: "Young stars, supergiants and so on, make a terrific splash - lots of light. The total mass of these can be very small compared to the total mass of the system". Dr Layzer then asked the key question: " . . . the discussion raises the point of what this classification would look like if you were to ignore completely all the Population I, and just focus attention on the Population II . . . " We stand on the shoulders of giants. The great observer E. E. Barnard, in his pioneering efforts to photograph the Milky Way, devoted the major part of his life to identifying and numbering dusty "holes" and dust lanes in our Milky Way. No one could have dreamt that the pervasiveness of these cosmic dust masks (not only in our Galaxy but also in galaxies at high redshift) is so great, that their "penetration" is truly one of the pioneering challenges from both space-borne telescopes and from the ground.
In this book, the author leads the reader, step by step and without any advanced mathematics, to a clear understanding of the foundations of modern elementary particle physics and cosmology. He also addresses current and controversial questions on topics such as string theory. The book contains gentle introductions to the theories of special and general relativity, and also classical and quantum field theory. The essential aspects of these concepts are understood with the help of simple calculations; for example, the force of gravity as a consequence of the curvature of the space-time. Also treated are the Big Bang, dark matter and dark energy, as well as the presently known interactions of elementary particles: electrodynamics, the strong and the weak interactions including the Higgs boson. Finally, the book sketches as yet speculative theories: Grand Unification theories, supersymmetry, string theory and the idea of additional dimensions of space-time. Since no higher mathematical or physics expertise is required, the book is also suitable for college and university students at the beginning of their studies. Hobby astronomers and other science enthusiasts seeking a deeper insight than can be found in popular treatments will also appreciate this unique book.
Black holes are one of the most remarkable predictions of Einstein's general relativity. In recent years, ideas in brane-world cosmology, string theory and gauge/gravity duality have motivated studies of black holes in more than four dimensions, with surprising results. In higher dimensions, black holes exist with exotic shapes and unusual dynamics. Edited by leading expert Gary Horowitz, this exciting book is the first devoted to this new field. The major discoveries are explained by the people who made them: Rob Myers describes the Myers-Perry solutions that represent rotating black holes in higher dimensions; Ruth Gregory describes the Gregory-Laflamme instability of black strings; and Juan Maldacena introduces gauge/gravity duality, the remarkable correspondence that relates a gravitational theory to nongravitational physics. Accessible to anyone with a standard course in general relativity, this is an important resource for graduate students and researchers in general relativity, string theory and high energy physics. |
You may like...
Nonlinear Wave and Plasma Structures in…
Evgeny Mishin, Anatoly Streltsov
Paperback
R3,347
Discovery Miles 33 470
The Cluster Active Archive - Studying…
Harri Laakso, Matthew Taylor, …
Hardcover
R7,737
Discovery Miles 77 370
A Dirty Window - Diffuse and Translucent…
Loris Magnani, Steven N. Shore
Hardcover
R5,367
Discovery Miles 53 670
Applied General Relativity - Theory and…
Michael H Soffel, Wenbiao Han
Hardcover
|