![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Relativity physics > General
"Relativity In our Time" is a book concerning the relevance of Einstein's theory to human relations in contemporary times. lt is physics and it is philosophy. lt is a discussion about one of the greatest of all pillars of 20th century thought and science. Based on a seminar course for a mixture of science and humanities students, the approach and narrative style leads the reader towards the frontier of thinking in this farreaching subject.; Sachs deals with the whole spread of relativity, starting from the early history of Galileo and Faraday, he arrives at the foundation of the special theory. There is a logical transition to the general theory while the last part of the book covers the mind-testing realms of unified field theory, Mach's principle and cosmology.; The book begins with atomistic, deterministic, classical physics and goes on towards a view of continuous fields of matter and a clearer view of spacetime. The reader is led into Einstein's extension of this theory towards a unified force field; consequently the authors address the issue of the validity of linear mathematics compared with the realism of a non- linear universe.; Such arguments today are leading towards a new paradigm in science - a study and description of nonlinear natural systems especially far from equilibrium systems; their energetics and dynamics.; This book should be of value to postgraduates, undergraduates, secondary students and professionals in physics and philosophy and anyone with an interest in science subject.
As we humans have expanded our horizons to see things vastly smaller, faster, larger, and farther than ever before, we have been forced to confront preconceptions born of the human experience and create wholly new ways of looking at the world around us. The theories of relativity and quantum physics were developed out of this need and have provided us with phenomenal, mind-twisting insights into the strange and exciting reality show of our universe. "Relativity and Quantum Physics For Beginners" is an entertaining and accessible introduction to the bizarre concepts that fueled the scientific revolution of the 20th century and led to amazing advances in our understanding of the universe.
This is a physics textbook for first-year undergraduates. Among the subjects covered are Newtonian mechanics and the Galilean transformations, Lorentz transformations, the principle of constancy, velocity transformations, relativistic mechanics, relativistic electromagnetism and the clock paradox. The book contains a number of worked examples and also offers extra coverage of the subject in sections containing more advanced material. Each chapter closes with problems and answers.
First published in 1922, this book represents the first attempt to popularise the more accessible aspects of Albert Einstein's general theory of relativity. Eschewing the mathematical components that put the theory beyond many people's grasp, the author employs metaphorical examples and thought experiments to convey the fundamental ideas and assertions of one of physics' most famous principles - which remains the accepted description of gravitation more than a century after its first publication. This book will of interest to students of physics as an introductory basis to aid further study.
Relativistic cosmology has in recent years become one of the most exciting and active branches of current research. In conference after conference the view is expressed that cosmology today is where particle physics was forty years ago, with major discoveries just waiting to happen. Also gravitational wave detectors, presently under construction or in the testing phase, promise to open up an entirely novel field of physics. It is to take into account such recent developments, as well as to improve the basic text, that this second edition has been undertaken. The most affected is the last part on cosmology, but there are smaller additions, corrections, and additional exercises throughout. The books basic purpose is to make relativity come alive conceptually. Hence the emphasis on the foundations and the logical subtleties rather than on the mathematics or the detailed experiments per se. Aided by some 300 exercises, the book promotes a deep understanding and the confidence to tackle any fundamental relativistic problem. To request a copy of the Solutions Manual, visit: http: //global.oup.com/uk/academic/physics/admin/solutions
This book presents the basic fundamentals of descriptive archaeoastronomy and its application to the astronomical descriptions found in ancient Indian scriptures. Archaeoastronomy is a branch of positional astronomy that helps to determine the epochs of ancient astronomical alignments and special astronomical events. In this book, only the descriptions of special stellar alignments and events found in ancient texts can identify the antiquity of the descriptions. India possesses a large volume of ancient scriptures like Vedas and Puranas which contain many astronomical descriptions as in ancient India positional astronomy was well developed. The antiquities of these texts are determined through archaeoastronomical techniques. Major events like Mahabharata War are dated and using these dates a chronology of ancient India is determined. The astronomically determined chronology is compared with the results from various archaeological, palaeoclimatological, geological and genealogical investigations of ancient India. This introductory book interests readers interested in unveiling the mystery involved with the protohistory of this ancient civilization.
This book takes the reader from the preliminary ideas of the Special Theory of Relativity (STR) to the doorsteps of the General Theory of Relativity (GTR).The first part explains the main concepts in a layman's language, including STR, the Lorentz transformation, relativistic mechanics. Thereafter the concept of tensors is built up in detail, especially Maxwell's stress tensor with illustrative examples, culminating in the energy-momentum conservation in electromagnetic fields. Mathematical structure of Minkowski's space-time is constructed and explained graphically. The equation of motion is formulated and then illustrated by the example of relativistic rocket. The principle of covariance is explained with the covariant equations of classical electrodynamics. Finally, the book constructs the energy tensor which constitutes the source term in Einstein's field equation, which clears the passage to the GTR.In the book, the concepts of tensors are developed carefully and a large number of numerical examples taken from atomic and nuclear physics. The graphs of important equations are included. This is suitable for studies in classical electrodynamics, modern physics, and relativity.
An authoritative interdisciplinary account of the historic discovery of gravitational waves In 1915, Albert Einstein predicted the existence of gravitational waves-ripples in the fabric of spacetime caused by the movement of large masses-as part of the theory of general relativity. A century later, researchers with the Laser Interferometer Gravitational-Wave Observatory (LIGO) confirmed Einstein's prediction, detecting gravitational waves generated by the collision of two black holes. Shedding new light on the hundred-year history of this momentous achievement, Einstein Was Right brings together essays by two of the physicists who won the Nobel Prize for their instrumental roles in the discovery, along with contributions by leading scholars who offer unparalleled insights into one of the most significant scientific breakthroughs of our time. This illuminating book features an introduction by Tilman Sauer and invaluable firsthand perspectives on the history and significance of the LIGO consortium by physicists Barry Barish and Kip Thorne. Theoretical physicist Alessandra Buonanno discusses the new possibilities opened by gravitational wave astronomy, and sociologist of science Harry Collins and historians of science Diana Kormos Buchwald, Daniel Kennefick, and Jurgen Renn provide further insights into the history of relativity and LIGO. The book closes with a reflection by philosopher Don Howard on the significance of Einstein's theory for the philosophy of science. Edited by Jed Buchwald, Einstein Was Right is a compelling and thought-provoking account of one of the most thrilling scientific discoveries of the modern age.
This is the only book on the subject of group theory and Einstein's theory of gravitation. It contains an extensive discussion on general relativity from the viewpoint of group theory and gauge fields. It also puts together in one volume many scattered, original works, on the use of group theory in general relativity theory. There are twelve chapters in the book. The first six are devoted to rotation and Lorentz groups, and their representations. They include the spinor representation as well as the infinite-dimensional representations. The other six chapters deal with the application of groups -- particularly the Lorentz and the SL(2, C) groups -- to the theory of general relativity. Each chapter is concluded with a set of problems. The topics covered range from the fundamentals of general relativity theory, its formulation as an SL(2, C) gauge theory, to exact solutions of the Einstein gravitational field equations. The important Bondi-Metzner-Sachs group, and its representations, conclude the book The entire book is self-contained in both group theory and general relativity theory, and no prior knowledge of either is assumed. The subject of this book constitutes a relevant link between field theoreticians and general relativity theoreticians, who usually work rather independently of each other. The treatise is highly topical and of real interest to theoretical physicists, general relativists and applied mathematicians. It is invaluable to graduate students and research workers in quantum field theory, general relativity and elementary particle theory.
Differentilil Geometry and Relativity Theory: An Introduction approaches relativity asa geometric theory of space and time in which gravity is a manifestation of space-timecurvature, rathe1 than a force. Uniting differential geometry and both special and generalrelativity in a single source, this easy-to-understand text opens the general theory of relativityto mathematics majors having a backgr.ound only in multivariable calculus and linearalgebra.The book offers a broad overview of the physical foundations and mathematical details ofrelativity, and presents concrete physical interpretations of numerous abstract concepts inRiemannian geometry. The work is profusely illustrated with diagrams aiding in the understandingof proofs and explanations. Appendices feature important material on vectoranalysis and hyperbolic functions.Differential Geometry and Relativity Theory: An Introduction serves as the ideal textfor high-level undergraduate couues in mathematics and physics, and includes a solutionsmanual augmenting classroom study. It is an invaluable reference for mathematicians interestedin differential and IUemannian geometry, or the special and general theories ofrelativity
In these inspiring lectures David Bohm explores Albert Einstein's celebrated Theory of Relativity that transformed forever the way we think about time and space. Yet for Bohm the implications of the theory were far more revolutionary both in scope and impact even than this. Stepping back from dense theoretical and scientific detail in this eye-opening work, Bohm describes how the notion of relativity strikes at the heart of our very conception of the universe, regardless of whether we are physicists or philosophers.
The world would be a very different place if it were not for Albert Einstein. Like Newton and Galileo before him, this remarkable scientist changed forever mankind's understanding of the universe. In 1921, five years after proclaiming his general theory of relativity, Einstein was awarded the Nobel Prize for Physics in recognition of his remarkable achievements. In the same year he travelled to the United States to give four lectures that consolidated his theory and sought to explain its meaning to a new audience. These lectures were published the following year as The Meaning of Relativity, which he revised with each new edition until his death. It remains a key work for anyone wishing to discover at first hand the workings of one of the most inspiring minds of the twentieth century.
Albert Einstein, one of the most prolific scientists of the twentieth century, developed the theory of relativity which was crucial for the advancement of modern physics. Young Einstein identified a paradox between Newtonian Mechanics and Maxwell's equations which pointed to a flawed understanding of space and time by the scientists of the day. In Relativity, Einstein presents his findings using a minimal amount of mathematical language, but the text can still be challenging for readers who lack an extensive scientific background. The Routledge Guidebook to Einstein's Relativity expands on and supplements this seminal text, by exploring: the historical context of Einstein's work and the background to his breakthroughs details of experimental verification of special and general relativity the enduring legacy of Einstein's theories and their implications for future scientific breakthroughs. This is an essential introduction for students of physics, philosophy and history in understanding the key elements of the work and the importance of this classic text to society today.
First published in 1925, Bertrand Russell's ABC of Relativity was considered a masterwork of its time, contributing significantly to the mass popularisation of science. Authoritative and accessible, it provides a remarkable introductory guide to Einstein's theory of Relativity for a general readership. One of the most definitive reference guides of its kind, and written by one of the twentieth century's most influential philosophers, ABC of Relativity continues to be as relevant today as it was on first publication.
This is a self-contained exposition of general relativity with emphasis given to tetrad and spinor structures and physical measurements on curved manifolds. General relativity is now essential to the understanding of modern physics, but the power of the theory cannot be fully explained without a detailed knowledge of its mathematical structure. The aim of this book is to introduce this structure, and then to use it to develop those applications that have been central to the growth of the theory. An overview of differential geometry is provided and properties of a tetrad field are then extensively analysed. These are used to introduce spinors, to describe the geometry of congruences and define the physical measurements on a curved manifold. The coupling of fields and geometry is investigated in terms of Lagrangeans and a detailed discussion of some exact solutions of the Einstein equations are provided.
A very attractive feature of the theory of general relativity is that it is a perfectexampleofa"falsi?able"theory:notunableparameterispresentinthe theory and therefore even a single experiment incompatible with a prediction of the theory would immediately lead to its inevitable rejection, at least in the physical regime of application of the aforementioned experiment. This fact provides additional scienti?c value to one of the boldest and most fascinating achievements of the human intellect ever, and motivates a wealth of e?orts in designing and implementing tests aimed at the falsi?cation of the theory. The ?rst historical test on the theory has been the de?ection of light gr- ing the solar surface (Eddington 1919): the compatibility of the theory with this ?rst experiment together with its ability to explain the magnitude of the perihelion advance of Mercury contributed strongly to boost acceptance and worldwideknowledge.However,technologicallimitations preventedphysicists from setting up more constraining tests for several decades after the formu- tion of the theory. In fact, a relevant problem with experimental general r- ativity is that the predicted deviations from the Newtonian theory of gravity areverysmallwhentheexperimentsarecarriedoutinterrestriallaboratories.
Introduction to General Relativity and Cosmology gives undergraduate students an overview of the fundamental ideas behind the geometric theory of gravitation and spacetime. Through pointers on how to modify and generalise Einstein's theory to enhance understanding, it provides a link between standard textbook content and current research in the field.Chapters present complicated material practically and concisely, initially dealing with the mathematical foundations of the theory of relativity, in particular differential geometry. This is followed by a discussion of the Einstein field equations and their various properties. Also given is analysis of the important Schwarzschild solutions, followed by application of general relativity to cosmology. Questions with fully worked answers are provided at the end of each chapter to aid comprehension and guide learning. This pared down textbook is specifically designed for new students looking for a workable, simple presentation of some of the key theories in modern physics and mathematics.
Differential Forms and the Geometry of General Relativity provides readers with a coherent path to understanding relativity. Requiring little more than calculus and some linear algebra, it helps readers learn just enough differential geometry to grasp the basics of general relativity. The book contains two intertwined but distinct halves. Designed for advanced undergraduate or beginning graduate students in mathematics or physics, most of the text requires little more than familiarity with calculus and linear algebra. The first half presents an introduction to general relativity that describes some of the surprising implications of relativity without introducing more formalism than necessary. This nonstandard approach uses differential forms rather than tensor calculus and minimizes the use of "index gymnastics" as much as possible. The second half of the book takes a more detailed look at the mathematics of differential forms. It covers the theory behind the mathematics used in the first half by emphasizing a conceptual understanding instead of formal proofs. The book provides a language to describe curvature, the key geometric idea in general relativity.
The book opens with a description of the smooth transition from Newtonian to Einsteinian behaviour from electrons as their energy is progressively increased, and this leads directly to the relativistic expressions for mass, momentum and energy of a particle.
In a universe filled by chaos and disorder, one physicist makes the radical argument that the growth of order drives the passage of time -- and shapes the destiny of the universe. Time is among the universe's greatest mysteries. Why, when most laws of physics allow for it to flow forward and backward, does it only go forward? Physicists have long appealed to the second law of thermodynamics, held to predict the increase of disorder in the universe, to explain this. In The Janus Point, physicist Julian Barbour argues that the second law has been misapplied and that the growth of order determines how we experience time. In his view, the big bang becomes the "Janus point," a moment of minimal order from which time could flow, and order increase, in two directions. The Janus Point has remarkable implications: while most physicists predict that the universe will become mired in disorder, Barbour sees the possibility that order -- the stuff of life -- can grow without bound. A major new work of physics, The Janus Point will transform our understanding of the nature of existence.
After completing the final version of his general theory of relativity in November 1915, Albert Einstein wrote a book about relativity for a popular audience. His intention was "to give an exact insight into the theory of relativity to those readers who, from a general scientific and philosophical point of view, are interested in the theory, but who are not conversant with the mathematical apparatus of theoretical physics." The book remains one of the most lucid explanations of the special and general theories ever written. In the early 1920s alone, it was translated into ten languages, and fifteen editions in the original German appeared over the course of Einstein's lifetime. This new edition of Einstein's celebrated book features an authoritative English translation of the text along with an introduction and a reading companion by Hanoch Gutfreund and Jurgen Renn that examines the evolution of Einstein's thinking and casts his ideas in a broader present-day context. A special chapter explores the history of and the stories behind the early foreign-language editions in light of the reception of relativity in different countries. This edition also includes a survey of the introductions from those editions, covers from selected early editions, a letter from Walther Rathenau to Einstein discussing the book, and a revealing sample from Einstein's handwritten manuscript. Published on the hundredth anniversary of general relativity, this handsome edition of Einstein's famous book places the work in historical and intellectual context while providing invaluable insight into one of the greatest scientific minds of all time.
Of all philosophers of the 20th century, few built more bridges between academic disciplines than Karl Popper. He contributed to a wide variety of fields in addition to the epistemology and the theory of scientific method for which he is best known. This book illustrates and evaluates the impact, both substantive and methodological, that Popper has had in the natural and mathematical sciences. The topics selected include quantum mechanics, evolutionary biology, cosmology, mathematical logic, statistics, and cognitive science. The approach is multidisciplinary, opening a dialogue across scientific disciplines and between scientists and philosophers.
Almost weightless and able to pass through the densest materials with ease, neutrinos seem to defy the laws of nature. But these mysterious particles may hold the key to our deepest questions about the universe, says physicist Heinrich Pas. In The Perfect Wave, Pas serves as our fluent, deeply knowledgeable guide to a particle world that tests the boundaries of space, time, and human knowledge. The existence of the neutrino was first proposed in 1930, but decades passed before one was detected. Pas animates the philosophical and scientific developments that led to and have followed from this seminal discovery, ranging from familiar topics of relativity and quantum mechanics to more speculative theories about dark energy and supersymmetry. Many cutting-edge topics in neutrino research--conjectures about the origin of matter, extra-dimensional spacetime, and the possibility of time travel--remain unproven. But Pas describes the ambitious projects under way that may confirm them, including accelerator experiments at CERN and Fermilab, huge subterranean telescopes designed to detect high-energy neutrino radiation, and the Planck space observatory scheduled to investigate the role of neutrinos in cosmic evolution. As Pas's history of the neutrino illustrates, what is now established fact often sounded wildly implausible and unnatural when first proposed. The radical side of physics is both an exciting and an essential part of scientific progress, and The Perfect Wave renders it accessible to the interested reader.
This book is a collection of articles from several world-class researchers, and is inspired by Sir Roger Penrose's work. It gives an overview of the interaction between geometry and physics, from which many important developments have emerged. The volume collects together ideas from across the physical sciences, and indicates the many applications of geometrical ideas and techniques across mathematics and mathematical physics. |
![]() ![]() You may like...
Topology Optimization - Theory, Methods…
Martin Philip Bendsoe, Ole Sigmund
Hardcover
R3,978
Discovery Miles 39 780
Nonlinear Dynamics New Directions…
Hernan Gonzalez-Aguilar, Edgardo Ugalde
Hardcover
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R4,145
Discovery Miles 41 450
High-Performance Computing Using FPGAs
Wim Vanderbauwhede, Khaled Benkrid
Hardcover
R7,226
Discovery Miles 72 260
Dynamic Modeling of Environmental…
Michael L. Deaton, James J Winebrake
Hardcover
R2,378
Discovery Miles 23 780
Open Problems in Mathematics
John Forbes Nash Jr, Michael Th Rassias
Hardcover
R5,627
Discovery Miles 56 270
Technical System Maintenance…
Sylwia Werbinska-Wojciechowska
Hardcover
R2,926
Discovery Miles 29 260
Fault Tolerant Control for Switched…
Dongsheng Du, Bin Jiang, …
Hardcover
The Fourth Terminal - Benefits of…
Sylvain Clerc, Thierry Di Gilio, …
Hardcover
R3,576
Discovery Miles 35 760
|