![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Relativity physics > General
It is not an exaggeration to say that one of the most exciting predictions of Einstein's theory of gravitation is that there may exist "black holes" putative objects whose gravitational fields are so strong that no physical bodies or signals can break free of their pull and escape. The proof that black holes do exist, and an analysis of their properties, would have a significance going far beyond astrophysics. Indeed, what is involved is not just the discovery of yet another even if extremely remarkable, astro physical object, but a test of the correctness of our understanding of the properties of space and time in extremely strong gravitational fields. Theoretical research into the properties of black holes, and into the possible corol laries of the hypothesis that they exist, has been carried out with special vigor since the beginning of the 1970's. In addition to those specific features of black holes that are important for the interpretation of their possible astrophysical manifestations, the theory has revealed a number of unexpected characteristics of physical interactions involving black holes. By the middle of the 1980's a fairly detailed understanding had been achieved of the properties of the black holes, their possible astrophysical manifestations, and the specifics of the various physical processes involved. Even though a completely reliable detection of a black hole had not yet been made at that time, several objects among those scrutinized by astrophysicists were considered as strong candidates to be confirmed as being black holes."
This book contains the expanded lecture notes of the 32nd Saas-Fee Advanced Course. The three contributions present the central themes in modern research on the cold universe, ranging from cold objects at large distances to the physics of dust in cold clouds.
In this engaging, lyrical book, physicist Sander Bais shows how science can liberate us from our cultural straitjacket of prejudice and intolerance. We're living in a time in which technology is taken for granted, yet belief in such standard scientific facts as evolution is actually decreasing. How is it possible for cell phones and Creationism to coexist? Science-fundamental, fact-based knowledge, not the latest technological gadget-can give us the global and local perspectives we need to make the world a better place. Bais argues that turning points in the history of science have been accompanied by similar milestones in social change, deeply affecting our view of nature, our perception of the human condition, and our understanding of the universe and our place in it. After a lively description of how curiosity trumps prejudice and pseudoscience in matters ranging from lightning rods to the transmission of HIV, Bais considers what drives science and scientists, a quest that culminates in that miraculous mixture of creativity and ingenuity found in the greatest scientists. He describes what he calls the "circle of science"-the microcosm and the macrocosm as mirror images-and demonstrates unity in a dazzling sequence of topics, including the hierarchy of structures, the forces of nature, cosmological evolution, and the challenge of complexity. Finally, Bais takes on the obstacles science encounters in a world dominated by short-term political and economic interests. Science, he says, needs to get its message out. Drawing on sources that range from Charles Darwin and Karl Popper to Herbert Marcuse and Richard Feynman, with In Praise of Science, Bais does just that. Copublished with MIT Press, United States of America.
This thesis reports on the search for dark matter in data taken with the ATLAS detector at CERN's Large Hadron Collider (LHC). The identification of dark matter and the determination of its properties are among the highest priorities in elementary particle physics and cosmology. The most likely candidate, a weakly interacting massive particle, could be produced in the high energy proton-proton collisions at the LHC. The analysis presented here is unique in looking for dark matter produced together with a Higgs boson that decays into its dominant decay mode, a pair of b quarks. If dark matter were seen in this mode, we would learn directly about the production mechanism because of the presence of the Higgs boson. This thesis develops the search technique and presents the most stringent production limit to date.
In this short book, renowned theoretical physicist and author Carlo Rovelli gives a straightforward introduction to Einstein's General Relativity, our current theory of gravitation. Focusing on conceptual clarity, he derives all the basic results in the simplest way, taking care to explain the physical, philosophical and mathematical ideas at the heart of "the most beautiful of all scientific theories". Some of the main applications of General Relativity are also explored, for example, black holes, gravitational waves and cosmology, and the book concludes with a brief introduction to quantum gravity. Written by an author well known for the clarity of his presentation of scientific ideas, this concise book will appeal to university students looking to improve their understanding of the principal concepts, as well as science-literate readers who are curious about the real theory of General Relativity, at a level beyond a popular science treatment.
These proceedings celebrate the achievements of the great astronomer Zdenek Kopal, and reflect the state of the art of the dynamically evolving field of binary research, which owes so much to Kopal's pioneering work.
in this work, we must therefore assume several abstract concepts that hardly need defending at this point in the history of mechanics. Most notably, these include the concept of the point particle and the concept of the inertial observer. The study of the relativistic particle system is undertaken here by means of a particular classical theory, which also exists on the quantum level, and which is especially suited to the many-body system in flat spacetime. In its fundamental postulates, the theory may be consid ered to be primarily the work of E.C.G. Stiickelberg in the 1940's, and of L.P. Horwitz and C. Piron in the 1970's, who may be said to have provided the generalization of Stiickelberg's theory to the many-body system. The references for these works may be found in Chapter 1. The theory itself may be legitimately called off-shell Hamiltonian dynamics, parameterized relativistic mechanics, or even classical event dynamics. The most important feature of the theory is probably the use of an invariant world time parameter, usually denoted T, which provides an evolution time for the system in such as way as to allow manifest co variance within a Hamiltonian formalism. In general, this parameter is neither a Lorentz-frame time, nor the proper time of the particles in the system."
2 Homogeneous superconducting state 210 3 Superconducting phases with broken space symmetries 213 4 Flavor asymmetric quark condensates 219 5 Concluding remarks 221 Acknowledgments 222 References 223 Neutral Dense Quark Matter 225 Mei Huang and Igor Shovkovy 1 Introduction 225 2 Local charge neutrality: homogeneous phase 226 3 Global charge neutrality: mixed phase 234 4 Conclusion 238 References 238 Possibility of color magnetic superconductivity 241 Toshitaka Tatsumi, Tomoyuki Maruyama, and Eiji Nakano 1 Introduction 241 2 What is ferromagnetism in quark matter? 243 3 Color magnetic superconductivity 248 4 Chiral symmetry and magnetism 253 5 Summary and Concluding remarks 258 Acknowledgments 260 References 260 Magnetic Fields of Compact Stars with Superconducting Quark Cores 263 David M. Sedrakian, David Blaschke, and Karen M. Shahabasyan 1 Introduction 263 2 Free Energy 265 3 Ginzburg-Landau equations 267 4 Vortex Structure 269 5 Solution of Ginzburg-Landau Equations 271 6 The Magnetic Field Components 273 7 Summary 275 Acknowledgments 275 References 275 Thermal Color-superconducting Fluctuations in Dense Quark Matter 277 D. N.
This volume introduces the application of two-component spinor calculus and fibre-bundle theory to complex general relativity. A review of basic and important topics is presented, such as two-component spinor calculus, conformal gravity, twistor spaces for Minkowski space-time and for curved space-time, Penrose transform for gravitation, the global theory of the Dirac operator in Riemannian four-manifolds, various definitions of twistors in curved space-time and the recent attempt by Penrose to define twistors as spin-3/2 charges in Ricci-flat space-time. Original results include some geometrical properties of complex space-times with nonvanishing torsion, the Dirac operator with locally supersymmetric boundary conditions, the application of spin-lowering and spin-raising operators to elliptic boundary value problems, and the Dirac and Rarita--Schwinger forms of spin-3/2 potentials applied in real Riemannian four-manifolds with boundary. This book is written for students and research workers interested in classical gravity, quantum gravity and geometrical methods in field theory. It can also be recommended as a supplementary graduate textbook.
Papers from the Discussion Conference on Recent Advances in General Relativity, held at the U. of Pittsburgh, May 1990, survey the interacting fields of classical general relativity, astrophysics, and quantum gravity. Some of the remarks made following the invited papers are also included. The conference also included three workshops on classical g
This volume addresses the history and epistemology of early modern cosmology. The authors reconstruct the development of cosmological ideas in the age of 'scientific revolution' from Copernicus to Leibniz, taking into account the growth of a unified celestial-and-terrestrial mechanics. The volume investigates how, in the rise of the new science, cosmology displayed deep and multifaceted interrelations between scientific notions (stemming from mechanics, mathematics, geometry, astronomy) and philosophical concepts. These were employed to frame a general picture of the universe, as well as to criticize and interpret scientific notions and observational data. This interdisciplinary work reconstructs a conceptual web pervaded by various intellectual attitudes and drives. It presents an historical-epistemological unified itinerary which includes Copernicus, Kepler, Galileo, Descartes, Huygens, Newton and Leibniz. For each of the scientists and philosophers, a presentation and commentary is made of their cosmological views, and where relevant, outlines of their most relevant physical concepts are given. Furthermore, the authors highlight the philosophical and epistemological implications of their scientific works. This work is helpful both as a synthetic overview of early modern cosmology, and an analytical exposition of the elements that were intertwined in early-modern cosmology. This book addresses historians, philosophers, and scientists and can also be used as a research source book by post-graduate students in epistemology, history of science and history of philosophy.
This thesis focuses on understanding the growth and formation mechanism of supermassive black holes (SMBHs), an issue it addresses by investigating the dense interstellar medium that is assumed to be a crucial component of the fuel for SMBHs. The thesis also offers unique guidance on using the Atacama Large Millimeter/submillimeter Array (ALMA) in active galactic nuclei (AGN) research. The author presents the three major findings regarding SMBH formation and growth: (1) The development of a new diagnostic method for the energy sources in galaxies based on submillimeter spectroscopy, which allows identification of accreting SMBHs even in obscured environments, (2) the discovery that the circumnuclear dense gas disk (CND), with a typical size of a few tens of parsecs, which plays a crucial role in governing the growth of SMBHs, and (3) the discovery that the mass transfer budget from the CND to the central SMBHs can be quantitatively understood with a theoretical model incorporating the circumnuclear starburst as a driver of mass transfer. The thesis skillfully reviews these three findings, which have greatly improved our understanding of the growth mechanism of SMBHs.
In a universe filled by chaos and disorder, one physicist makes the radical argument that the growth of order drives the passage of time -- and shapes the destiny of the universe. Time is among the universe's greatest mysteries. Why, when most laws of physics allow for it to flow forward and backward, does it only go forward? Physicists have long appealed to the second law of thermodynamics, held to predict the increase of disorder in the universe, to explain this. In The Janus Point, physicist Julian Barbour argues that the second law has been misapplied and that the growth of order determines how we experience time. In his view, the big bang becomes the "Janus point," a moment of minimal order from which time could flow, and order increase, in two directions. The Janus Point has remarkable implications: while most physicists predict that the universe will become mired in disorder, Barbour sees the possibility that order -- the stuff of life -- can grow without bound. A major new work of physics, The Janus Point will transform our understanding of the nature of existence.
After about a century of success, physicists feel the need to probe the limits of validity of special-relativity base theories. This book is the outcome of a special seminar held on this topic. The authors gather in a single volume an extensive collection of introductions and reviews of the various facets involved, and also includes detailed discussion of philosophical and historical aspects.
This treatment of differential geometry and the mathematics required for general relativity makes the subject of this book accessible for the first time to anyone familiar with elementary calculus in one variable and with a knowledge of some vector algebra. The emphasis throughout is on the geometry of the mathematics, which is greatly enhanced by the many illustrations presenting figures of three and more dimensions as closely as book form will allow. The imaginative text is a major contribution to expounding the subject of differential geometry as applied to studies in relativity, and will prove of interest to a large number of mathematicians and physicists. Review from L'Enseignement Mathématique
After an extensive introduction to the asymptotic safety approach to quantum gravity, this thesis explains recent key advances reported in four influential papers. Firstly, two exact solutions to the reconstruction problem (how to recover a bare action from the effective average action) are provided. Secondly, the fundamental requirement of background independence in quantum gravity is successfully implemented. Working within the derivative expansion of conformally reduced gravity, the notion of compatibility is developed, uncovering the underlying reasons for background dependence generically forbidding fixed points in such models. Thirdly, in order to understand the true nature of fixed-point solutions, one needs to study their asymptotic behaviour. The author carefully explains how to find the asymptotic form of fixed point solutions within the f(R) approximation. Finally, the key findings are summarised and useful extensions of the work are identified. The thesis finishes by considering the need to incorporate matter into the formalism in a compatible way and touches upon potential opportunities to test asymptotic safety in the future.
This book provides an accessible, yet thorough, introduction to special and general relativity, crafted and class-tested over many years of teaching. Suitable for advanced undergraduate and graduate students, this book provides clear descriptions of how to approach the mathematics and physics involved. It is also contains the latest exciting developments in the field, including dark energy, gravitational waves, and frame dragging. The table of contents has been carefully developed in consultation with a large number of instructors teaching courses worldwide, to ensure its wide applicability to modules on relativity and gravitation. Features: A clear, accessible writing style, presenting a sophisticated approach to the subject, that remains suitable for advanced undergraduate students and above Class-tested over many years To be accompanied by a partner volume on 'Advanced Topics' for students to further extend their learning
This thesis presents several significant new results that shed light on two major puzzles of modern cosmology: the nature of inflation, the very early phase of the universe that is thought to have given rise to the large-scale structures that we observe today; and that of the current accelerated expansion. In particular, it develops a clean method for characterizing linear cosmological perturbations for general theories where gravity is modified and/or affected by a new component, called dark energy, responsible for the accelerated expansion. It proposes a new extension to what were long thought to be the most general scalar field theories devoid of instabilities, and demonstrates the robustness of the relation between the energy scale of inflation and the predicted amplitude of gravitational waves. Finally, it consolidates a set of consistency relations between correlation functions of the cosmological density field and investigates the phenomenological consequences of their potential violation. Presented in a clear, succinct and rigorous style, each of these original results is both profound and important and will leave a deep mark on the field.
|
You may like...
Advances in Quantum Monte Carlo
Shigenori Tanaka, Stuart M. Rothstein, …
Hardcover
R5,469
Discovery Miles 54 690
Advances in Quantum Monte Carlo
James B Anderson, Stuart M. Rothstein
Hardcover
R2,690
Discovery Miles 26 900
|