![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Relativity physics > General
Analytical Mechanics for Relativity and Quantum Mechanics is an
innovative and mathematically sound treatment of the foundations of
analytical mechanics and the relation of classical mechanics to
relativity and quantum theory. It is intended for use at the
introductory graduate level. A distinguishing feature of the book
is its integration of special relativity into teaching of classical
mechanics. After a thorough review of the traditional theory, Part
II of the book introduces extended Lagrangian and Hamiltonian
methods that treat time as a transformable coordinate rather than
the fixed parameter of Newtonian physics. Advanced topics such as
covariant Langrangians and Hamiltonians, canonical transformations,
and Hamilton-Jacobi methods are simplified by the use of this
extended theory. And the definition of canonical transformation no
longer excludes the Lorenz transformation of special relativity.
Einstein's general theory of relativity is introduced in this
advanced undergraduate and beginning graduate level textbook.
Topics include special relativity, in the formalism of Minkowski's
four-dimensional space-time, the principle of equivalence,
Riemannian geometry and tensor analysis, Einstein field equation,
as well as many modern cosmological subjects, from primordial
inflation and cosmic microwave anisotropy to the dark energy that
propels an accelerating universe.
The chapters in this monograph are contributions from the Advances in Quantum Monte Carlo symposium held at Pacifichem 2010, International Chemical Congress of Pacific Basin Societies. The symposium was dedicated to celebrate the career of James B. Anderson, a notable researcher in the field. Quantum Monte Carlo provides an ab initio solution to the Schroedinger equation by performing a random walk through configuration space in imaginary time. Benchmark calculations suggest that its most commonly-used variant, "fixed-node" diffusion Monte Carlo, estimates energies with an accuracy comparable to that of high-level coupled-cluster calculations. These two methods, each having advantages and disadvantages, are complementary "gold-standards" of quantum chemistry. There are challenges facing researchers in the field, several of which are addressed in the chapters in this monograph. These include improving the accuracy and precision of quantum Monte Carlo calculations; understanding the exchange nodes and utilizing the simulated electron distribution; extending the method to large and/or experimentally-challenging systems; and developing hybrid molecular mechanics/dynamics and Monte Carlo algorithms.
General Relativity is a beautiful geometric theory, simple in its mathematical formulation but leading to numerous consequences with striking physical interpretations: gravitational waves, black holes, cosmological models, and so on. This introductory textbook is written for mathematics students interested in physics and physics students interested in exact mathematical formulations (or for anyone with a scientific mind who is curious to know more of the world we live in), recent remarkable experimental and observational results which confirm the theory are clearly described and no specialised physics knowledge is required. The mathematical level of Part A is aimed at undergraduate students and could be the basis for a course on General Relativity. Part B is more advanced, but still does not require sophisticated mathematics. Based on Yvonne Choquet-Bruhat's more advanced text, General Relativity and the Einstein Equations, the aim of this book is to give with precision, but as simply as possible, the foundations and main consequences of General Relativity. The first five chapters from General Relativity and the Einstein Equations have been updated with new sections and chapters on black holes, gravitational waves, singularities, and the Reissner-Nordstroem and interior Schwarzchild solutions. The rigour behind this book will provide readers with the perfect preparation to follow the great mathematical progress in the actual development, as well as the ability to model, the latest astrophysical and cosmological observations. The book presents basic General Relativity and provides a basis for understanding and using the fundamental theory.
Advances in Quantum Monte Carlo confronts the challenges in quantum mechanics that have become progressively more prevalent in the last five years. This book will cover the needed advances in Quantum Monte Carlo methods including improvements and a complete range of applications. Advances in Quantum Monte Carlo will also include a complete spectrum of applications.
While quantum theory has been used to study the physical universe with great profit, both intellectual and financial, ever since its discovery eighty-five years ago, over the last fifty years we have found out more and more about the theory itself, and what it tells us about the universe. It seems we may have to accept non-locality - cause and effect may be light-years apart; loss of realism - nature may be fundamentally probabilistic; and non-determinism - it seems that God does play dice! This book, totally up-to-date and written by an expert in the field, explains the emergence of our new perspective on quantum theory, but also describes how the ideas involved in this re-evaluation led seamlessly to a totally new discipline - quantum information theory. This discipline includes quantum computation, which is able to perform tasks quite out of the range of other computers; the totally secure algorithms of quantum cryptography; and quantum teleportation - as part of science fact rather than science fiction. The book is the first to combine these elements, and will be of interest to anybody interested in fundamental aspects of science and their application to the real world.
A discourse on time, gravity, and the universe that takes the reader through the subtleties of time, the origin of the universe, and physical evolution in Einstein's theory and its extensions. Can time and causality remain fundamental when the classical ideal of spacetime becomes a concept of limited applicability in quantum gravity? A thorough exposition on the canonical framework of Einstein's theory and its extensions reveals the synergy between gravitation and the cosmic clock of our expanding universe that renders time concrete, physical, and comprehensible. In conjunction with a paradigm shift from four-covariance to just spatial diffeomorphism invariance, causal time-ordering of the quantum state of the universe and its evolution in cosmic time become meaningful. The quantum state of the universe is the embodiment of our shared past, present, and future. The advocated framework prompts natural extensions and improvements to Einstein's theory. A salient feature is the addition of a Cotton-York term to the physical Hamiltonian. Besides bringing improved ultraviolet convergence, this radically changes the solution to the initial data problem and the quantum origin of the universe. It lends support to the quantum beginning of the universe as an exact Chern-Simons Hartle-Hawking state that features Euclidean-Lorentzian instanton tunneling. A signature of this state is that it manifests, at the lowest order approximation, scale-invariant two-point correlation function for transverse-traceless quantum metric fluctuations. This initial quantum state also implies, at the level of expectation values, a low-entropy hot smooth Robertson-Walker beginning that is in accord with Penrose's Weyl Curvature Hypothesis. Consequently, the gravitational arrow of time of increasing spatial volume and the thermodynamic second law arrow of time of increasing entropy concur as our universe expands and ages.
The book aims to give a mathematical presentation of the theory of general relativity (that is, spacetime-geometry-based gravitation theory) to advanced undergraduate mathematics students. Mathematicians will find spacetime physics presented in the definition-theorem-proof format familiar to them. The given precise mathematical definitions of physical notions help avoiding pitfalls, especially in the context of spacetime physics describing phenomena that are counter-intuitive to everyday experiences.In the first part, the differential geometry of smooth manifolds, which is needed to present the spacetime-based gravitation theory, is developed from scratch. Here, many of the illustrating examples are the Lorentzian manifolds which later serve as spacetime models. This has the twofold purpose of making the physics forthcoming in the second part relatable, and the mathematics learnt in the first part less dry. The book uses the modern coordinate-free language of semi-Riemannian geometry. Nevertheless, to familiarise the reader with the useful tool of coordinates for computations, and to bridge the gap with the physics literature, the link to coordinates is made through exercises, and via frequent remarks on how the two languages are related.In the second part, the focus is on physics, covering essential material of the 20th century spacetime-based view of gravity: energy-momentum tensor field of matter, field equation, spacetime examples, Newtonian approximation, geodesics, tests of the theory, black holes, and cosmological models of the universe.Prior knowledge of differential geometry or physics is not assumed. The book is intended for self-study, and the solutions to the (over 200) exercises are included.
This book deals with underlying basic concepts in relativity. The fundamental work of Stueckelberg, who formulated a consistent relativistic classical and quantum dynamics, generalized for application to many-body systems by Horwitz and Piron (SHP theory), is explained with emphasis on its conceptual content. The two-body bound state and scattering theory are also discussed. The ideas are involved in the Lindner experiment showing interference in time and the proposed experiment of Palacios et al. searching for the persistence of entanglement at unequal times is discussed. The meaning of the Newton-Wigner position operator and the Landau-Peierls construction in terms of relativistic dynamics is given. Finally, the embedding of the SHP theory into the framework of general relativity, providing a canonical structure with particle coordinates and momenta, is studied, carrying with it new concepts in relativistic dynamics.
Somewhere near the heart of existence, shimmers the ethereal beauty of the mystery of Time. Though seemingly familiar to us all, time harbours secrets that penetrate the very deepest levels of reality, and though we feel certain in our conviction that we're swept forth upon the crest of its never-ending flow, with Einstein's discovery of relativity came what is perhaps the most stunning realisation in the entire history of scientific thought - the wondrously breathtaking revelation that in reality, there's actually no such thing as the passage of time... How can this extraordinary truth be reconciled with the reality we so surely suppose to experience? What does it mean for the very human concerns of life and death, free will, identity, and self? What should it mean for our philosophy? And how should it inform our world view? The search for answers leads through the fantastical realm of quantum physics, and the strange parallel worlds it describes, as we discover that the answers which such questions provoke, are perhaps even more profound than the questions themselves. Buried deep within the riddle of time, lies the staggering beauty of the world. As we peel back the layers to try and sneak a glimpse into eternity, we find a light shining not only upon the nature of reality, but on the nature of ourselves...
Instant Physics pulls together all the pivotal physics knowledge and thought into one concise volume. Each page contains a discrete 'cheat sheet', which tells you the most important facts in bite-sized chunks, meaning you can become an expert in an instant. From black holes to black body radiation, telescopes to microscopes, quantum mechanics to general relativity, every key figure, discovery or idea is explained with succinct and lively text and graphics. Perfect for the knowledge hungry and time poor, this collection of graphic-led lessons makes psychology interesting and accessible. Everything you need to know is here.
Owing to the increased accuracy requirements in fields such as astrometry and geodesy the general theory of relativity must be taken into account for any mission requiring highly accurate orbit information and for practically all observation and measurement techniques. This book highlights the confluence of Applied Mathematics, Physics and Space Science as seen from Einstein's general theory of relativity and aims to bridge the gap between theoretical and applied domains. The book investigates three distinct areas of general relativity: Exact solutions of the Einstein field equations of gravitation. Dynamics of near-Earth objects and solar system bodies. Relativistic orbitography. This book is an updated and expanded version of the author's PhD thesis which was awarded the International Astronomical Union PhD prize in Division A: Fundamental Astronomy. Included is a new introduction aimed at graduate students of General Relativity and extended discussions and results on topics in post-Newtonian dynamics and general relativistic spacecraft propagation.
Relativity has much to offer for a well-rounded education. Yet books on relativity either assume a strong background in physics and math, aimed at advanced physics students, or, alternatively, offer a broad description with little intellectual challenge. This book bridges the gap. It aims at readers with essentially no physics or math background, who still find it rewarding to think rigorously. The book takes a "thinking tools" approach, by first making readers comfortable with a new thinking tool and then applying it to learn more about how nature works. By the end of the book, readers will have collected a versatile toolbox and will be comfortable using the tools to think about and really understand the intriguing phenomena they may have only heard about, including the twin paradox, black holes, and time travel. End-of-chapter exercises span a range of difficulty, allowing adventurous readers to stretch their understanding further as desired. Students who have studied, or are studying, relativity at a more mathematical level will also find the book useful for a more conceptual understanding. |
![]() ![]() You may like...
High Performance Computing Systems…
Stephen Jarvis, Steven Wright, …
Paperback
R1,597
Discovery Miles 15 970
Architectural Design - Conception and…
Chris A. Vissers, Luis Ferreira Pires, …
Hardcover
Full-Duplex Communications for Future…
Hirley Alves, Taneli Riihonen, …
Hardcover
R3,064
Discovery Miles 30 640
EAI International Conference on Big Data…
Anandakumar Haldorai, Arulmurugan Ramu, …
Hardcover
R4,644
Discovery Miles 46 440
Robust Resource Allocation in Future…
Saeedeh Parsaeefard, Ahmad Reza Sharafat, …
Hardcover
R4,688
Discovery Miles 46 880
Handbook of Signal Processing Systems
Shuvra S. Bhattacharyya, Ed F. Deprettere, …
Hardcover
R6,150
Discovery Miles 61 500
Zero Trust Journey Across the Digital…
Abbas Kudrati, Binil A. Pillai
Hardcover
R3,343
Discovery Miles 33 430
|