![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Relativity physics > General
Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.
Gravity, a Geometrical Course presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications, updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book, divided in two volumes, is a rich resource for graduate students and those who wish to gain a deep knowledge of the subject without an instructor. Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed account of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations. Differentiable manifolds, fibre-bundles, differential forms, and the theory of connections are covered, with a sketchy introduction to homology and cohomology. (Pseudo)-Riemannian geometry is presented both in the metric and in the vielbein approach. Physical applications include the motions in a Schwarzschild field leading to the classical tests of GR (light-ray bending and periastron advance) discussion of relativistic stellar equilibrium, white dwarfs, Chandrasekhar mass limit and polytropes. An entire chapter is devoted to tests of GR and to the indirect evidence of gravitational wave emission. The formal structure of gravitational theory is at all stages compared with that of non gravitational gauge theories, as a preparation to its modern extension, namely supergravity, discussed in the second volume. Pietro Fre is Professor of Theoretical Physics at the University of Torino, Italy and is currently serving as Scientific Counsellor of the Italian Embassy in Moscow. His scientific passion lies in supergravity and all allied topics, since the inception of the field, in 1976. He was professor at SISSA, worked in the USA and at CERN. He has taught General Relativity for 15 years. He has previously two scientific monographs, Supergravity and Superstrings and The N=2 Wonderland, He is also the author of a popular science book on cosmology and two novels, in Italian."
Teaching Einstein s general relativity at introductory level poses problems because students cannot begin to appreciate the basics of the theory unless they learn a sufficient amount of Riemannian geometry. Most elementary books take the easy course of telling the students a few working rules stripping the mathematical details to a minimum while the advanced books take the mathematical background for granted. Students eager to study Einstein s theory at a deeper level are forced to learn the mathematical background on their own and they feel lost because pure mathematical texts on geometry are too abstract and formal. The present book solves this pedagogical problem in a unique way by dividing the book into three parts. Essential concepts of Riemannian geometry are introduced in Part I (four chapters) through Gauss work on curvature of surfaces using only ordinary calculus. A first acquaintance with Einstein s theory can then be made. Only after this first brush with both physics and mathematics of relativity, a proper, detailed mathematical background is developed in the next six chapters in Part II. The third part then recaptures all the basic concepts of general relativity and leaves the student with a sound preparation for learning advanced topics. My aim has been that after learning from this book a student should not feel discouraged when she opens advanced texts on general relativity for further reading."
This book presents the first English translation of the original French treatise "La Physique d'Einstein" written by the young Georges Lemai tre in 1922, only six years after the publication of Albert Einstein's theory of General Relativity. It includes an historical introduction and a critical edition of the original treatise in French supplemented by the author's own later additions and corrections. Monsignor Georges Lemai tre can be considered the founder of the "Big Bang Theory" and a visionary architect of modern Cosmology. The scientific community is only beginning to grasp the full extent of the legacy of this towering figure of 20th century physics. Against the best advice of the greatest names of his time, the young Lemai tre was convinced, solely through the study of Einstein's theory of General Relativity, that space and time must have had a beginning with a tremendous "Big Bang" from a "quantum primeval atom" resulting in an ever-expanding Universe with a positive cosmological constant. But how did the young Lemai tre, essentially on his own, come to grips with the physics of Einstein? A year before his ordination as a diocesan priest, he submitted the audacious treatise, published in this book, that was to earn him Fellowships to study at Cambridge, MIT and Harvard, and launched him on a scientific path of ground-breaking discoveries. Almost a century after Lemai tre's seminal publications of 1927 and 1931, this highly pedagogical treatise is still of timely interest to young minds and remains of great value from a history of science perspective.
This textbook is suitable for a one-semester introduction to General Relativity for advanced undergraduates in physics and engineering. The book is concise so that the entire material can be covered in the one-semester time frame. Many of the calculations are done in detail, without difficult mathematics, to help the students. Though concise, the theory development is lucid and the readers are exposed to possible analytic calculations.In the second edition, the famous twin paradox with acceleration is solved in full from the accelerated observer's frame. The findings of the Event Horizon Telescope (EHT) collaboration, who captured the first ever image of a black hole, are discussed in detail. The geodetic and frame drag precessions of gyroscopes in orbit about a rotating Earth are worked out and the Gravity Probe B (GPB) experiment is discussed. Also in the second edition are some new exercise problems.Resources are provided to instructors who adopt this textbook for their courses. Adopting instructors can print and copy portions of these resources solely for their teaching needs. All instructional resources are furnished for informational use only, and are subject to change without notice.
This textbook is suitable for a one-semester introduction to General Relativity for advanced undergraduates in physics and engineering. The book is concise so that the entire material can be covered in the one-semester time frame. Many of the calculations are done in detail, without difficult mathematics, to help the students. Though concise, the theory development is lucid and the readers are exposed to possible analytic calculations.In the second edition, the famous twin paradox with acceleration is solved in full from the accelerated observer's frame. The findings of the Event Horizon Telescope (EHT) collaboration, who captured the first ever image of a black hole, are discussed in detail. The geodetic and frame drag precessions of gyroscopes in orbit about a rotating Earth are worked out and the Gravity Probe B (GPB) experiment is discussed. Also in the second edition are some new exercise problems.Resources are provided to instructors who adopt this textbook for their courses. Adopting instructors can print and copy portions of these resources solely for their teaching needs. All instructional resources are furnished for informational use only, and are subject to change without notice.
1 IN THE MONOGRAPH SERIES directed by Henri Villat , several fasci- cules have been devoted to Relativity. First there are the general presentations ofTh. De Donder (nos. 8, 14, 43, 58), and then those more specifically devoted to Einsteinian gravitation - notably Georges Darmois's contribution (no. 25) and that of J. Haag (no. 46) on the Schwarzschild problem. The present fascicule takes its place alongside the two latter monographs, but it has been conceived and composed in such a way that it may be read and understood by anyone with a knowledge of the principles of Absolute Differential Calculus and of Relativity - either from the original exposi- tions of Einstein, Weyl, or Eddington, or, in French, from Cartan's excel- 2 lent works (for everything having to do with mathematical theories) and 3 from Chazy's (for Relativity and Celestial Mechanics), or naturally from Levi-Civita's The Absolute Differential Calculus (first edition, London and Glasgow, Blackie and Son, 1927) where the two original papers written in Italian are brought together: namely, Calcolo differenziale assoluto and Fondamenti di meccanica relativistica (Bologna, Zanichelli). As for the present fascicule, it is hardly necessary to point out that, as its title indicates, we seek to establish in the simplest possible terms the rela- tivistic aspect of what Newton and those who followed him regarded as the key to ordinary Celestial Mechanics.
The fourth edition contains seven new sections with chapters on General Relativity, Gravitational Waves and Relativistic Cosmology. The text has been thoroughly revised and additional problems inserted. The Complete course of Theoretical Physics by Landau and Lifshitz, recognized as two of the world's outstanding physicists, is published in full by Butterworth-Heinemann. It comprises nine volumes, covering all branches of the subject; translations from the Russian are by leading scientists.
The historic detection of gravitational waves on September 14, 2015, prompted by the highly energetic fusion of two black holes, has made events in the universe "audible" for the first time. This expansion of the scientific sensorium has opened a new chapter in astronomy and already led to, among others, fascinating new insights about the abundance of black holes, the collision of neutron stars, and the origin of heavy chemical elements. The history of this event, which is epochal for physics, is reconstructed in this book, along with a walk-through of the main principles of how the detectors operate and a discussion of how the search for gravitational waves is conducted. The book concludes with an update of the latest detections and developments to date and a brief look into the future of this exciting research field. This book is accessible to non-specialist readers from a general audience and is also an excellent introduction to the topic for undergraduates in physics. Features: Provides an introduction to the historic discovery of gravitational waves Explains the inner workings of the detectors and the search to find the waves hidden in the data Authored by a renowned specialist involved in the ground-breaking discovery Hartmut Grote is a Professor of physics at Cardiff University, UK. His main expertise is in experimental gravitational-wave physics, and he has worked on building and improving gravitational wave detectors for over 20 years. From 2009 to 2017, he was the scientific leader of the British-German gravitational-wave detector: GEO600.
In 1905, Albert Einstein offered a revolutionary theory--special relativity--to explain some of the most troubling problems in current physics concerning electromagnetism and motion. Soon afterwards, Hermann Minkowski recast special relativity essentially as a new geometric structure for spacetime. These ideas are the subject of the first part of the book. The second part develops the main implications of Einstein's general relativity as a theory of gravity rooted in the differential geometry of surfaces. The author explores the way an individual observer views the world and how a pair of observers collaborate to gain objective knowledge of the world. To encompass both the general and special theory, he uses the geometry of spacetime as the unifying theme of the book. To read it, one needs only a first course in linear algebra and multivariable calculus and familiarity with the physical applications of calculus.
Observing our Universe and its evolution with ever increasing sensitivity from ground-based or space-borne telescopes is posing great challenges to Fundamental Physics and Astronomy. The remnant cosmic microwave background, as beautifully measured by successive space missions COBE, WMAP, and now PLANCK, provides a unique probe of the very early stages of our Universe. The red-shift of atomic lines in distant galaxies, the dynamics of pulsars, the large scale structure of galaxies, and black holes are a few manifestations of the theory of General Relativity. Yet, today, we understand only 4% of the mass of our Universe, the rest being called dark energy and dark matter, both of unknown origin! A second family of space missions is currently emerging; rather than designing ever more re nedobservationalinstruments,physicistsandengineersseekalsotousethespaceenvironment to perform high-precision tests of the fundamental laws of physics. The technology required for such tests has become available only over the course of the last decades. Clocks of high accuracy are an example. They are based on advances in atomic and laser physics, such as cold atoms, enabling a new generation of highly sensitive quantum sensors for ground and space experiments. Two experiments in space have now tested Einstein's relativity theory: * Several decades ago, Gravity Probe A con rmed the accuracy of the gravitational red-shift ?5 according to general relativity to a level of 7x 10 [R. F. C. Vessot et al. , Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser, Phys. Rev. Lett. 45, 2081-2084 (1980)].
Compact objects are an important class of astronomical objects in current research. Supermassive black holes play an important role in the understanding of the formation of galaxies in the early Universe. Old white dwarfs are nowadays used to calibrate the age of the Universe. Mergers of neutron stars and black holes are the sources of intense gravitational waves which will be measured in the next ten years by gravitational wave detectors. Camenzind's Compact Objects in Astrophysics gives a comprehensive introduction and up-to-date overview about the physical processes behind these objects, covering the field from the beginning to most recent results, including all relevant observations. After a presentation of the taxonomy of compact objects, the
basic principles of general relativity are given. The author then
discusses in detail the physics and observations of white dwarfs
and neutron stars (including the most recent equations of state for
neutron star matter), the gravitational field of rapidly rotating
compact objects, rotating black holes (including ray tracing and
black hole magnetospheres), gravitational waves, and the new
understanding of accretion processes by means of the
magnetorotational instability of accretion disks.
The nature of space and time is one of the most fascinating and fundamental philosophical issues which presently engages at the deepest level with physics. During the last thirty years this notion has been object of an intense critical review in the light of new scientific theories which try to combine the principles of both general relativity and quantum theory-called theories of quantum gravity. This book considers the way string theory shapes its own account of spacetime disappearance from the fundamental level.
The Mathematical Principles of Scale Relativity Physics: The Concept of Interpretation explores and builds upon the principles of Laurent Nottale's scale relativity. The authors address a variety of problems encountered by researchers studying the dynamics of physical systems. It explores Madelung fluid from a wave mechanics point of view, showing that confinement and asymptotic freedom are the fundamental laws of modern natural philosophy. It then probes Nottale's scale transition description, offering a sound mathematical principle based on continuous group theory. The book provides a comprehensive overview of the matter to the reader via a generalization of relativity, a theory of colors, and classical electrodynamics. Key Features: Develops the concept of scale relativity interpreted according to its initial definition enticed by the birth of wave and quantum mechanics Provides the fundamental equations necessary for interpretation of matter, describing the ensembles of free particles according to the concepts of confinement and asymptotic freedom Establishes a natural connection between the Newtonian forces and the Planck's law from the point of view of space and time scale transition: both are expressions of invariance to scale transition The work will be of great interest to graduate students, doctoral candidates, and academic researchers working in mathematics and physics.
This book shows how one can combine Yang-Mills gauge symmetry and effective Einstein-Grossmann metric tensors to tackle physical problems at microscopic, macroscopic and super-macroscopic length scales. In particular, the combination of gauge symmetry and an effective metric tensor provides a framework for and leads to an alternative dynamics of cosmic expansion based on quantum Yang-Mills gravity at the super-macroscopic limit. Together with the cosmological principle, one can investigate and derive expanding scale factors, the age of the universe, the cosmic redshift, and the Hubble recession velocity. Furthermore, this framework leads to a possible explanation for the late-time accelerated cosmic expansion due to baryon masses and charges. All these discussions are based on the operationally defined space and time coordinates of inertial frames. Finally, this book expounds on the intimate relationship between space-time translation gauge symmetry and the beautiful ideas of the Lie derivative and Pauli's variation. One interesting application of the Lie derivative is to formulate a gravitational theory with an external space-time gauge group, which leads to Yang-Mills gravity.
This thoroughly revised 5th edition of Zeh's classic text investigates irreversible phenomena and their foundation in classical, quantum and cosmological settings. It includes new sections on the meaning of probabilities in a cosmological context, irreversible aspects of quantum computers, and various consequences of the expansion of the Universe. In particular, the book offers an analysis of the physical concept of time.
This is the second and final volume of Dutch physicist Hendrik Antoon Lorentz's scientific correspondence with Dutch colleagues, including Pieter Zeeman and Paul Ehrenfest. These 294 letters cover multiple subjects, ranging from pure mathematics to magneto-optics and wave mechanics. They reveal much about their author, including Lorentz's surprisingly active involvement in experimental matters in the first decades of his career. Letters are also devoted to general relativity, Lorentz's 1908 lecture on radiation theory, and his receipt of the Nobel Prize along with Zeeman in 1902. The letters are presented in their original language; Dutch originals are accompanied by English translations. A concise biography of Lorentz is also included.
The hydrogen Lyman-alpha line is of utmost importance to many fields of astrophysics. This UV line being conveniently redshifted with distance to the visible and even near infrared wavelength ranges, it is observable from the ground, and provides the main observational window on the formation and evolution of high redshift galaxies. Absorbing systems that would otherwise go unnoticed are revealed through the Lyman-alpha forest, Lyman-limit, and damped Lyman-alpha systems, tracing the distribution of baryonic matter on large scales, and its chemical enrichment. We are living an exciting epoch with the advent of new instruments and facilities, on board of satellites and on the ground. Wide field and very sensitive integral field spectrographs are becoming available on the ground, such as MUSE at the ESO VLT. The giant E-ELT and TMT telescopes will foster a quantum leap in sensitivity and both spatial and spectroscopic resolution, to the point of being able, perhaps, to measure directly the acceleration of the Hubble flow. In space, the JWST will open new possibilities to study the Lyman-alpha emission of primordial galaxies in the near infrared. As long as the Hubble Space Telescope will remain available, the UV-restframe properties of nearby galaxies will be accessible to our knowledge. Therefore, this Saas-Fee course appears very timely and should meet the interest of many young researchers.
Written by a former Olympiad student, Wang Jinhui, and a Physics Olympiad national trainer, Bernard Ricardo, Competitive Physics delves into the art of solving challenging physics puzzles. This book not only expounds a multitude of physics topics from the basics but also illustrates how these theories can be applied to problems, often in an elegant fashion. With worked examples that depict various problem-solving sleights of hand and interesting exercises to enhance the mastery of such techniques, readers will hopefully be able to develop their own insights and be better prepared for physics competitions. Ultimately, problem-solving is a craft that requires much intuition. Yet this intuition, perhaps, can only be honed by trudging through an arduous but fulfilling journey of enigmas.This is the second part of a two-volume series and will mainly analyze thermodynamics, electromagnetism and special relativity. A brief overview of geometrical optics is also included.
With a focus on modified gravity this book presents a review of the recent developments in the fields of gravity and cosmology, presenting the state of the art, high-lighting the open problems, and outlining the directions of future research. General Relativity and the CDM framework are currently the standard lore and constitute the concordance paradigm of cosmology. Nevertheless, long-standing open theoretical issues, as well as possible new observational ones arising from the explosive development of cosmology in the last two decades, offer the motivation and lead a large amount of research to be devoted in constructing various extensions and modifications. In this review all extended theories and scenarios are first examined under the light of theoretical consistency, and are then applied in various geometrical backgrounds, such as the cosmological and the spherical symmetric ones. Their predictions at both the background and perturbation levels, and concerning cosmology at early, intermediate and late times, are then confronted with the huge amount of observational data that astrophysics and cosmology has been able to offer in the last two decades. Theories, scenarios and models that successfully and efficiently pass the above steps are classified as viable and are candidates for the description of Nature, allowing readers to get a clear overview of the state of the art and where the field of modified gravity is likely to go. This work was performed in the framework of the COST European Action "Cosmology and Astrophysics Network for Theoretical Advances and Training Actions" - CANTATA.
General relativity or the general theory of relativity is the geometric theory of gravitation published by Albert Einstein in 1915. It is the current description of gravitation in modern physics. General relativity generalises special relativity and Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time, or spacetime. In particular, the curvature of spacetime is directly related to the four-momentum (mass-energy and linear momentum) of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of partial differential equations. Einstein's theory has important astrophysical implications. For example, it implies the existence of black holes-regions of space in which space and time are distorted in such a way that nothing, not even light, can escape-as an end-state for massive stars. There is evidence that such stellar black holes as well as more massive varieties of black hole are responsible for the intense radiation emitted by certain types of astronomical objects such as active galactic nuclei or microquasars.
This book is intended to engage the students in the elegance of electrodynamics and special relativity, whilst giving them the tools to begin graduate study. Here, from the basis of experiment, the authors first derive the Maxwell equations and special relativity. Introducing the mathematical framework of generalized tensors, the laws of mechanics, Lorentz force and the Maxwell equations are then cast in manifestly covariant form. This provides the basis for graduate study in field theory, high energy astrophysics, general relativity and quantum electrodynamics. As the title suggests, this book is "electrodynamics lite". The journey through electrodynamics is kept as brief as possible, with minimal diversion into details, so that the elegance of the theory can be appreciated in a holistic way. It is written in an informal style and has few prerequisites; the derivation of the Maxwell equations and their consequences is dealt with in the first chapter. Chapter 2 is devoted to conservation equations in tensor formulation; here, Cartesian tensors are introduced. Special relativity and its consequences for electrodynamics are introduced in Chapter 3 and cast in four-vector form, and here, the authors introduce generalized tensors. Finally, in Chapter 4, Lorentz frame invariant electrodynamics is developed. Supplementary material and examples are provided by the two sets of problems. The first is revision of undergraduate electromagnetism, to expand on the material in the first chapter. The second is more advanced corresponding to the remaining chapters, and its purpose is twofold: to expand on points that are important, but not essential, to derivation of manifestly covariant electrodynamics, and to provide examples of manipulation of cartesian and generalized tensors. As these problems introduce material not covered in the text, they are accompanied by full worked solutions. The philosophy here is to facilitate learning by problem solving, as well as by studying the text. Extensive appendices for vector relations, unit conversion and so forth are given with graduate study in mind.
A new title in the Manchester Physics Series, this introductory text emphasises physical principles behind classical mechanics and relativity. It assumes little in the way of prior knowledge, introducing relevant mathematics and carefully developing it within a physics context. Designed to provide a logical development of the subject, the book is divided into four sections, introductory material on dynamics, and special relativity, which is then followed by more advanced coverage of dynamics and special relativity. Each chapter includes problems ranging in difficulty from simple to challenging with solutions for solving problems. Includes solutions for solving problems Numerous worked examples included throughout the book Mathematics is carefully explained and developed within a physics environment Sensitive to topics that can appear daunting or confusing |
You may like...
Advances in Quantum Monte Carlo
Shigenori Tanaka, Stuart M. Rothstein, …
Hardcover
R5,469
Discovery Miles 54 690
Unified Non-Local Relativistic Theory of…
Boris V Alexeev
Paperback
The Evolutionary Cosmos - Outside-In…
Richard Westberg, Cal Orey
Hardcover
R1,032
Discovery Miles 10 320
|