![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Relativity physics > General
The book employs oscillatory dynamical systems to represent the Universe mathematically via constructing classical and quantum theory of damped oscillators. It further discusses isotropic and homogeneous metrics in the Friedman-Robertson-Walker Universe and shows their equivalence to non-stationary oscillators. The wide class of exactly solvable damped oscillator models with variable parameters is associated with classical special functions of mathematical physics. Combining principles with observations in an easy to follow way, it inspires further thinking for mathematicians and physicists. Contents Part I: Dissipative geometry and general relativity theory Pseudo-Riemannian geometry and general relativity Dynamics of universe models Anisotropic and homogeneous universe models Metric waves in a nonstationary universe and dissipative oscillator Bosonic and fermionic models of a Friedman-Robertson-Walker universe Time dependent constants in an oscillatory universe Part II: Variational principle for time dependent oscillations and dissipations Lagrangian and Hamilton descriptions Damped oscillator: classical and quantum theory Sturm-Liouville problem as a damped oscillator with time dependent damping and frequency Riccati representation of time dependent damped oscillators Quantization of the harmonic oscillator with time dependent parameters
This book provides an introduction to the theory of relativity and
the mathematics used in its processes. Three elements of the book
make it stand apart from previously published books on the theory
of relativity.
Astronomy in the Inca Empire was a robust and fundamental practice. The subsequent Spanish conquest of the Andes region disrupted much of this indigenous culture and resulted in a significant loss of information about its rich history. Through modern archaeoastronomy, this book helps recover and interpret some of these elements of Inca civilization. Astronomy was intricately woven into the very fabric of Andean existence and daily life. Accordingly, the text takes a holistic approach to its research, considering first and foremost the cultural context of each astronomy-related site. The chapters necessarily start with a history of the Incas from the beginning of their empire through the completion of the conquest by Spain before diving into an astronomical and cultural analysis of many of the huacas found in the heart of the Inca Empire. Over 300 color images-original artwork and many photos captured during the author's extensive field research in Machu Picchu, the Sacred Valley, Cusco, and elsewhere-are included throughout the book, adding visual insight to a rigorous examination of Inca astronomical sites and history.
This book presents an alternative representation of Einstein's Special Theory of Relativity, which makes Special Relativity much more comprehensible. Moreover, one will come across a fundamental relationship between the Special Theory of Relativity and the mechanics of space lattice. In all previous formulations, the Einsteinian special principle of relativity, in one or the other form is used as the starting point for Special Relativity. In correspondence to this principle, one takes it as granted apriori, that all observers independent of their uniform motion to each other measure one and the same propagation velocity of a light signal. This book is thought of as a lecture for physicists, mathematicians and computer scientists and concentrates on the students of these fields. The book should reach a broad circle of interested readers from the fields of natural sciences and philosophy and provide and invigorating experience for engineers.
These documents do nothing less than bear witness to one of the most dramatic changes in the foundations of science. The book has three sections that cover general relativity, epistemological issues, and quantum mechanics. This fascinating work will be a vital text for historians and philosophers of physics, as well as researchers in related physical theories.
Our vast Universe is filled with an enormous amount of matter and energy, which are the source of large gravitational potentials affecting all physical phenomena. Because this fact about the size and contents of the Universe was not known when our fundamental theories of dynamics and relativity were completed by the 1920s, the current theories - based as they are in empty space - fail to incorporate cosmic gravity. Though the current theories are consistent with the majority of empirical facts, there are some crucial discrepancies, which demand a drastic shift to a cosmic gravitational paradigm for the theories of relativity and dynamics. The book is a detailed and widely accessible account of this paradigm, called Cosmic Relativity, supported by ample empirical evidence. It is established that all motional relativistic effects are cosmic gravitational effects. The new theory of Cosmic Relativity solves and answers all outstanding questions and puzzles about dynamics and relativity.
The De Gruyter Studies in Mathematical Physics are devoted to the publication of monographs and high-level texts in mathematical physics. They cover topics and methods in fields of current interest, with an emphasis on didactical presentation. The series will enable readers to understand, apply and develop further, with sufficient rigor, mathematical methods to given problems in physics. For this reason, works with a few authors are preferred over edited volumes. The works in this series are aimed at advanced students and researchers in mathematical and theoretical physics. They can also serve as secondary reading for lectures and seminars at advanced levels.
The Golden Oldies series of the journal General Relativity and Gravitation reprints important papers in general relativity theory that were published 30 or more years ago and are either hard to get hold of, or were originally printed in a language other than English. They play a key part in making these important papers readily accessible today, in the language that has now become the lingua franca of scientific publication. The value of this reprinting is enhanced by an accompanying editorial note for each paper, which briefly explains the significance of the work and where it has subsequently led to, together with a biographical note about the author or authors. This volume presents a selection of 14 rarities among the Golden Oldies grouped in the three categories "Basic results in differential geometry and general relativity," "Discussion of physical effects" and "Basic exact solutions and their interpretation." Researchers in the field will appreciate having these important papers collected in one book for the first time. Reprinted from the journal General Relativity and Gravitation.
Special and General Relativity are concisely developed together with essential aspects of nuclear and particle physics. Problem sets are provided for many chapters, making the book ideal for a course on the physics of white dwarf and neutron star interiors. Norman K. Glendenning is Senior Scientist Emeritus at the Nuclear Science Division, Institute for Nuclear and Particle Astrophysics, Lawrence Berkeley National Laboratory at the University of California, Berkeley. He is the author of numerous books.
'Dark energy' is the name given to the unknown cause of the Universe's accelerating expansion, which is one of the most significant and surprising discoveries in recent cosmology. Understanding this enigmatic ingredient of the Universe and its gravitational effects is a very active, and growing, field of research. In this volume, twelve world-leading authorities on the subject present the basic theoretical models that could explain dark energy, and the observational and experimental techniques employed to measure it. Covering the topic from its origin, through recent developments, to its future perspectives, this book provides a complete and comprehensive introduction to dark energy for a range of readers. It is ideal for physics graduate students who have just entered the field and researchers seeking an authoritative reference on the topic.
This detailed account of the controversy surrounding the publication of Albert Einstein's theory of relativity explores the ferocious popular and academic opposition which at one time encircled one of the most important scientific breakthroughs of the twentieth century. Based on extensive archival research, this fascinating discourse includes a compelling and entertaining examination of the contemporary literature created by Einstein's detractors. Exploring the arguments and strategies, social contexts, and motivations of Einstein's detractors, and providing unique insights into the dynamics of scientific controversies, this book is ideal for anyone interested in the history and philosophy of physics, popular science, and the public understanding of science.
This contributed volume explores the renaissance of general relativity after World War II, when it transformed from a marginal theory into a cornerstone of modern physics. Chapters explore key historical processes related to the theory of general relativity, in addition to presenting a thorough treatment of the relevant science behind these episodes. A broad historiographical framework is introduced first, thus providing the broad context in which the given computational approaches and case studies occurred. Written by an international and interdisciplinary group of expert authors, these chapters will bring readers to a more complete understanding of Einstein's theory. Specific topics include: Social and citation networks The Fock-Infeld dispute Wheeler's turn to gravitation theory The position of general relativity in theories of fundamental interactions The pursuit of a quantum theory of gravity The emergence of dark matter in relation to cosmological models Institutional frameworks for gravitational wave search in Europe The Renaissance of General Relativity in Context is ideal for historians, philosophers, and sociologists of science. Students and researchers in physics will also be interested in the topics explored.
In this book, leading theorists present new contributions and reviews addressing longstanding challenges and ongoing progress in spacetime physics. In the anniversary year of Einstein's General Theory of Relativity, developed 100 years ago, this collection reflects the subsequent and continuing fruitful development of spacetime theories. The volume is published in honour of Carl Brans on the occasion of his 80th birthday. Carl H. Brans, who also contributes personally, is a creative and independent researcher and one of the founders of the scalar-tensor theory, also known as Jordan-Brans-Dicke theory. In the present book, much space is devoted to scalar-tensor theories. Since the beginning of the 1990s, Brans has worked on new models of spacetime, collectively known as exotic smoothness, a field largely established by him. In this Festschrift, one finds an outstanding and unique collection of articles about exotic smoothness. Also featured are Bell's inequality and Mach's principle. Personal memories and historical aspects round off the collection.
This book is an elaboration of lecture notes for the graduate course on General Rela tivity given by the author at Boston University in the spring semester of 1972. It is an introduction to the subject only, as the time available for the course was limited. The author of an introduction to General Relativity is faced from the beginning with the difficult task of choosing which material to include. A general criterion as sisting in this choice is provided by the didactic character of the book: Those chapters have to be included in priority, which will be most useful to the reader in enabling him to understand the methods used in General Relativity, the results obtained so far and possibly the problems still to be solved. This criterion is not sufficient to ensure a unique choice. General Relativity has developed to such a degree, that it is impossible to include in an introductory textbook of a reasonable length even a very condensed treatment of all important problems which have been discussed until now and the author is obliged to decide, in a more or less subjective manner, which of the more recent developments to omit. The following lines indicate by means of some examples the kind of choice made in this book."
Our esteemed colleague C. V. Vishveshwara, popularly known as Vishu, turned sixty on 6th March 1998. His colleagues and well wishers felt that it would be appropriate to celebrate the occasion by bringing out a volume in his honour. Those of us who have had the good fortune to know Vishu, know that he is unique, in a class by himself. Having been given the privilege to be the volume's editors, we felt that we should attempt something different in this endeavour. Vishu is one of the well known relativists from India whose pioneer ing contributions to the studies of black holes is universally recognised. He was a student of Charles Misner. His Ph. D. thesis on the stability of the Schwarzschild black hole, coordinate invariant characterisation of the sta tionary limit and event horizon for Kerr black holes and subsequent seminal work on quasi-normal modes of black holes have passed on to become the starting points for detailed mathematical investigations on the nature of black holes. He later worked on other aspects related to black holes and compact objects. Many of these topics have matured over the last thirty years. New facets have also developed and become current areas of vigorous research interest. No longer are black holes, ultracompact objects or event horizons mere idealisations of mathematical physicists but concrete entities that astrophysicists detect, measure and look for. Astrophysical evidence is mounting up steadily for black holes."
This book evolved out of some one hundred lectures given by twenty experts at a special instructional conference sponsored by the University Grants Commis sion, India. It is pedagogical in style and self-contained in several interrelated areas of physics which have become extremely important in present-day theoretical research. The articles begin with an introduction to general relativity and cosmology as well as particle physics and quantum field theory. This is followed by reviews of the standard gauge models of high-energy physics, renormalization group and grand unified theories. The concluding parts of the book comprise discussions in current research topics such as problems of the early universe, quantum cosmology and the new directions towards a unification of gravitation with other forces. In addition, special concise treatments of mathematical topics of direct relevance are also included. The content of the book was carefully worked out for the mutual education of students and research workers in general relativity and particle physics. This ambitious programe consequently necessitated the involvement of a number of different authors. However, care has been taken to ensure that the material meshes into a unified, cogent and readable book. We hope that the book will serve to initiate and guide a student in these different areas of investigation starting from first principles and leading to the exciting current research problems of an interdisciplinary nature in the context of the origin and structure of the universe."
Thermal noise from optical coatings is a growing area of concern and overcoming limits to the sensitivity of high precision measurements by thermal noise is one of the greatest challenges faced by experimental physicists. In this timely book, internationally renowned scientists and engineers examine our current theoretical and experimental understanding. Beginning with the theory of thermal noise in mirrors and substrates, subsequent chapters discuss the technology of depositing coatings and state-of-the-art dielectric coating techniques used in precision measurement. Applications and remedies for noise reduction are also covered. Individual chapters are dedicated to specific fields where coating thermal noise is a particular concern, including the areas of quantum optics/optomechanics, gravitational wave detection, precision timing, high-precision laser stabilisation via optical cavities and cavity quantum electrodynamics. While providing full mathematical detail, the text avoids field-specific jargon, making it a valuable resource for readers with varied backgrounds in modern optics.
Cosmology has become a very active research field in the last decades thanks to the impressing improvement of our observational techniques which have led to landmark discoveries such as the accelerated expansion of the universe, and have put physicists in front of new mysteries to unveil, such as the quest after the nature of dark matter and dark energy. These notes offer an approach to cosmology, covering fundamental topics in the field: the expansion of the universe, the thermal history, the evolution of small cosmological perturbations and the anisotropies in the cosmic microwave background radiation. Some extra topics are presented in the penultimate chapter and some standard results of physics and mathematics are available in the last chapter in order to provide a self-contained treatment. These notes offer an in-depth account of the above-mentioned topics and are aimed to graduate students who want to build an expertise in cosmology.
This book serves as a textbook for senior undergraduate students who are learning the subject of general relativity and gravitational waves for the first time. Both authors have been teaching the course in various forms for a few decades and have designed the book as a one stop book at basic level including derivations and exercises. A spectacular prediction of general relativity is gravitational waves. Gravitational waves were first detected by the LIGO detectors in 2015, hundred years after their prediction. Both authors are part of the LIGO Science Collaboration and were authors on the discovery paper. Therefore, a strong motivation for this book is to provide the essential concepts of general relativity theory and gravitational waves with their modern applications to students and to researchers who are new to the multi-disciplinary field of gravitational wave astronomy. One of the advanced topics covered in this book is the fundamentals of gravitational wave data analysis, filling a gap in textbooks on general relativity. The topic blends smoothly with other chapters in the book not only because of the common area of research, but it uses similar differential geometric and algebraic tools that are used in general relativity.
This book focuses on the equation of state (EoS) of compact stars, particularly the intriguing possibility of the "quark star model." The EoS of compact stars is the subject of ongoing debates among astrophysicists and particle physicists, due to the non-perturbative property of strong interaction at low energy scales. The book investigates the tidal deformability and maximum mass of rotating quark stars and triaxially rotating quark stars, and compares them with those of neutron stars to reveal significant differences. Lastly, by combining the latest observations of GW170817, the book suggests potential ways to distinguish between the neutron star and quark star models.
With applications in quantum field theory, general relativity and elementary particle physics, this four-volume work studies the invariance of differential operators under Lie algebras, quantum groups and superalgebras. This third volume covers supersymmetry, including detailed coverage of conformal supersymmetry in four and some higher dimensions, furthermore quantum superalgebras are also considered. Contents Lie superalgebras Conformal supersymmetry in 4D Examples of conformal supersymmetry for D > 4 Quantum superalgebras
By his theory of relativity, Albert Einstein has provked a revolution of thought in physical science. The aim of this book is to give an account of Einstein's work without introducing anything very technical in the way of mathematics, physics, or philosophy.
The Physical World offers a grand vision of the essential unity of physics that will enable the reader to see the world through the eyes of a physicist and understand their thinking. The text follows Einstein's dictum that 'explanations should be made as simple as possible, but no simpler', to give an honest account of how modern physicists understand their subject, including the shortcomings of current theory. The result is an up-to-date and engaging portrait of physics that contains concise derivations of the important results in a style where every step in a derivation is clearly explained, so that anyone with the appropriate mathematical skills will find the text easy to digest. It is over half a century since The Feynman Lectures in Physics were published. A new authoritative account of fundamental physics covering all branches of the subject is now well overdue. The Physical World has been written to satisfy this need. The book concentrates on the conceptual principles of each branch of physics and shows how they fit together to form a coherent whole. Emphasis is placed on the use of variational principles in physics, and in particular the principle of least action, an approach that lies at the heart of modern theoretical physics, but has been neglected in most introductory accounts of the subject. |
You may like...
Advances in Quantum Monte Carlo
Shigenori Tanaka, Stuart M. Rothstein, …
Hardcover
R5,469
Discovery Miles 54 690
The Evolutionary Cosmos - Outside-In…
Richard Westberg, Cal Orey
Hardcover
R1,032
Discovery Miles 10 320
Advances in Quantum Monte Carlo
James B Anderson, Stuart M. Rothstein
Hardcover
R2,690
Discovery Miles 26 900
|