![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Relativity physics > General
This volume contains papers presented at an international
conference to celebrate Fred Hoyle's monumental contributions to
astronomy, astrophysics and astrobiology and more generally to
humanity and culture. The contributed articles highlight the
important aspects of his scientific life and show how much of an
example and inspiration he has been for over three generations in
the 20th century.
Causal relations, and with them the underlying null cone or conformal structure, form a basic ingredient in all general analytical studies of asymptotically flat space-time. The present book reviews these aspects from the analytical, geometrical and numerical points of view. Care has been taken to present the material in a way that will also be accessible to postgraduate students and nonspecialist reseachers from related fields.
This book is written for theoretical and mathematical physicists and mat- maticians interested in recent developments in complex general relativity and their application to classical and quantum gravity. Calculations are presented by paying attention to those details normally omitted in research papers, for pedagogical r- sons. Familiarity with fibre-bundle theory is certainly helpful, but in many cases I only rely on two-spinor calculus and conformally invariant concepts in gravitational physics. The key concepts the book is devoted to are complex manifolds, spinor techniques, conformal gravity, ?-planes, ?-surfaces, Penrose transform, complex 3 1 - - space-time models with non-vanishing torsion, spin- fields and spin- potentials. 2 2 Problems have been inserted at the end, to help the reader to check his und- standing of these topics. Thus, I can find at least four reasons for writing yet another book on spinor and twistor methods in general relativity: (i) to write a textbook useful to - ginning graduate students and research workers, where two-component spinor c- culus is the unifying mathematical language.
Soliton theory is an important branch of applied mathematics and mathematical physics. An active and productive field of research, it has important applications in fluid mechanics, nonlinear optics, classical and quantum fields theories etc. This book presents a broad view of soliton theory. It gives an expository survey of the most basic ideas and methods, such as physical background, inverse scattering, Backl nd transformations, finite-dimensional completely integrable systems, symmetry, Kac-moody algebra, solitons and differential geometry, numerical analysis for nonlinear waves, and gravitational solitons. Besides the essential points of the theory, several applications are sketched and some recent developments, partly by the authors and their collaborators, are presented.
The Joint European and National Astronomical Meeting (JENAM) of 2002, was held in Porto - Portugal (2-7 September 2002), corresponding to the I ph Meeting of the European Astronomical Society (EAS) and the IJ! En- contra Nacional de Astronomia e Astroftsica (12ENAA) of the Sociedade Portuguesa de Astronomia (SPA). Portugal has a small and young community of researchers in Astronomy. This meeting have had an important role in marking the beginning of what we expect to be a new phase for Astronomy in Portugal. The fact that we have chosen to address '"the future" reflects this will of the Portuguese com- munity to share and discuss our commitment for the next decades with our colleagues. The meeting, titled "The Unsolved Universe: Challenges for the Fu- ture", aimed at discussing some of the major research programmes and objec- tives for the next decades. The scientific programme included the plenary ses- sions (invited reviews and highlight talks), whose contributions are published in this book, and several workshops on more specific topics.
The majority of books dealing with prospects for interstellar flight tackle the problem of the propulsion systems that will be needed to send a craft on an interstellar trajectory. The proposed book looks at two other, equally important aspects of such space missions, and each forms half of this two part book. Part 1 looks at the ways in which it is possible to exploit the focusing effect of the Sun as a gravitational lens for scientific missions to distances of 550 AU and beyond into interstellar space. The author explains the mechanism of the Sun as a gravitational lens, the scientific investigations which may be carried out along the way to a distance of 550 AU (and at the 550 AU sphere itself), the requirements for exiting the Solar System at the highest speed and a range of project ideas for missions entering interstellar space. Part 2 of the book deals with the problems of communicating between an interstellar spaceship and the Earth, especially at very high speeds. Here the author assesses a range of mathematical tools relating to the Karhunen-Loeve Transform (KLT) for optimal telecommunications, technical topics that may one day enable humans flying around the Galaxy to keep in contact with the Earth. This part of the book opens with a summary of the author's 2003 Pe ek Lecture presented at the IAC in Bremen, which introduces the concept of KLT for engineers and 'newcomers' to the subject. It is planned to include a DVD containing the full mathematical derivations of the KLT for those interested in this important mathematical tool whilst the text itself will contain the various results without outlines of the mathematical proofs. Astronautical engineers will thus be able to see the application of the results without getting bogged down in the mathematics."
This book is a comprehensive reference on differential geometry. It shows that Maxwell, Dirac and Einstein fields, which were originally considered objects of a very different mathematical nature, have representatives as objects of the same mathematical nature. The book also analyzes some foundational issues of relativistic field theories. All calculation procedures are illustrated by many exercises that are solved in detail.
Relativistic quantum electrodynamics, which describes the electromagneticinteractions of electrons and atomic nuclei, provides the basis for modeling the electronic structure of atoms, molecules and solids and of their interactions with photons and other projectiles. The theory underlying the widely used GRASP relativistic atomic structure program, the DARC electron-atom scattering code and the new BERTHA relativistic molecular structure program is presented in depth, together with computational aspects relevant to practical calculations. Along with an understanding of the physics and mathematics, the reader will gain some idea of how to use these programs to predict energy levels, ionization energies, electron affinities, transition probabilities, hyperfine effects and other properties of atoms and molecules.
This Brief presents a new way of introducing relativity theory, in which perplexing relativistic effects such as time dilation and Lorentz contraction are explained prior to the discussion of Lorentz-transformation. The notion of relativistic mass is shown to contradict the spirit of relativity theory and the true significance of the mass-energy relation is contrasted with the popular view of it. The author discusses the twin paradox from the point of view of both siblings. Last but not least, the fundamentals of general relativity are described, including the recent Gravity Probe B experiment.
This volume is composed of extensive and detailed notes from the lectures given at the 40th Karpacz Winter School. This school focussed on quantum gravity phenomenology with emphasis on its relation to observational astrophysics and cosmology. These notes have been carefully edited with the aim to give advanced students and young researchers a balanced and accessible introduction to a rather heavily mathematical subject.
Each contribution is an article in itself, and great effort has been made by the authors to be lucid and not too technical. A few brief highlights of the round-table discussions are given between the chapters. Topics include: Quantum non-locality, the measurement problem, quantum insights into relativity, cosmology and thermodynamics, and possible bearings of quantum mechanics to biology and consciousness. Authors include Yakir Aharanov and Anton Zeilinger, plus Nobel laureates Anthony J. Leggett (2003) and Gerardus t Hooft (1999). Foreword written by Sir Roger Penrose, best-selling author (The Emperor's New Mind) and world-renowned mathematical physicist.
Back in1954,a paper[2] by Bondi and Gold was to pick upona much olderqu- tion and raise anew one that would trigger another longdebate. The old question hadbeenaroundsince the beginning of the twentiethcentury, whenBorn?rstraised it[1] and others followed suit. This was the question of whethera uniformly acc- erated charge (in?at spacetime) would radiateelectromagnetic energy. The new question arose from the claim by Bondi and Gold that (inthe contextof general relativity now)a static charge ina static gravitational ?eld cannot radiateenergy. If this were the case,thenaparticular version of the equivalence principle would thereby be contradicted. This book reviews the problem discovered by Bondi and Gold and discusses the ensuingdebate ascarried on by Fulton and Rohrlich [3], DeWitt and Brehme [4], Mould [5], Boulware [6], andParrott [7].Various solutionshave been proposed by the above (and otherswhoare not discussed here). One of the aims here will be to putforward arather different solution to Bondi and Gold's radiation problem. So eventhough the paperscited are discussed to a large extent in chronological order, the reason for writing this is not justto produce an historical reference. Andeven though the version of general relativity applied hereis entirely consensual, every one of these papersis criticised on at leastoneimportant count, soI suspectthat the resultas a whole should not be described asconsensual.
This book aims to span the cultural differences separating the humanities from the natural sciences. In his exposition, the author goes well beyond the typical level found in popular science presentations. There is a separate chapter devoted to the mathematical fundamentals needed for understanding many concepts in physics.
This thoroughly revised 5th edition of Zeh's classic text investigates irreversible phenomena and their foundation in classical, quantum and cosmological settings. It includes new sections on the meaning of probabilities in a cosmological context, irreversible aspects of quantum computers, and various consequences of the expansion of the Universe. In particular, the book offers an analysis of the physical concept of time.
Thisbookisaneditedversionofthelecturesdeliveredduringthe1stAegean SummerSchoolonCosmology,heldonSamosisland,Greece,inSeptember 21-29,2001,andorganizedjointlybytheDepartmentofMathematics,U- versity of the Aegean and the Department of Physics, National Technical UniversityofAthens. Cosmology,thescienceoftheuniverse,standsatthecrossroadsofmany ?eldsofphysicsandmathematicsandpresentsuswithchallengingproblems of many forms. Although there are by now many textbooks discussing the subjectatmanylevels,itistruethatnosinglebookhasthecharacteristics wehadinmindwheneditingthisvolume. Wehavetriednottoproducea proceedingsvolumebutmoreamultiauthoredtextbookwhichcouldserveas areferencesourceofcurrentideasincosmology. Webelievethisbookcovers atanintroductorylevelmostoftheissueswhichareconsideredimportant inmoderncosmologicalresearchandcanbereadbyagraduatestudentor researcherwhowishestoacquireareasonableknowledgeofcosmologythat will,wehope,continuetobeofvalueforyearstocome. The 1st Aegean School on Cosmology, and consequently this book, - camepossiblewiththekindsupportofmanypeopleandorganizations. We received ?nancial support from the following sources and this is gratefully acknowledged: the Municipality of Karlovassi, the North Aegean Regional Secretariat, the Prefecture of Samos, the Ministry of the Aegean, and the NationalBankofGreece. TheadministrativesupportoftheSchoolwastakenupwithgreatcare byMrs. EvelynPappaandMantoKatsianiandwewouldliketothankthem bothfortheirkinde?ortstoresolvemanyissueswhicharosebefore,during andaftertheSchool. WeacknowledgethehelpofMr. NectariosBenekoswho designedandmaintainedthewebsiteoftheSchool. Last,butnotleast,wearegratefultothesta?ofSpringer-Verlag,resp- siblefortheLectureNotesinPhysics,whoseabilitiesandhelpcontributed greatlytothe?neappearanceofthisbook. Karlovassi,Samos, SpirosCotsakis March2002 EleftheriosPapantonopoulos TableofContents PartI HistoryandOverview 1 IsNatureGeneric? SpirosCotsakis,PeterG. L. Leach...3 1. 1 Introduction...3 1. 2 PrinciplesofCosmologicalModelling...4 1. 2. 1 Spacetimes...4 1. 2. 2 TheoriesofGravity...5 1. 2. 3 MatterFields...6 1. 3 Cosmologies...6 1. 4 CosmologicalProblems...8 1. 4. 1 TheSingularityProblem...8 1. 4. 2 TheProblemofCosmicTopology...9 1. 4. 3 TheProblemofAsymptoticStates...9 1. 4. 4 GravityTheoriesandtheEarlyUniverse...11 1. 5Outlook ...12 References...14 2 EvolutionofIdeasinModernCosmology AndreasParaskevopoulos...16 2. 1 Introduction...16 2. 2 TheBeginningsofModernCosmology(1917-1950)...17 2. 3 Cosmology1950-1970:HotBigBang, SingularitiesandQuantumApproach...20 2. 4 Cosmology1970-Thisbookisaneditedversionofthelecturesdeliveredduringthe1stAegean SummerSchoolonCosmology,heldonSamosisland,Greece,inSeptember 21-29,2001,andorganizedjointlybytheDepartmentofMathematics,U- versity of the Aegean and the Department of Physics, National Technical UniversityofAthens. Cosmology,thescienceoftheuniverse,standsatthecrossroadsofmany ?eldsofphysicsandmathematicsandpresentsuswithchallengingproblems of many forms. Although there are by now many textbooks discussing the subjectatmanylevels,itistruethatnosinglebookhasthecharacteristics wehadinmindwheneditingthisvolume. Wehavetriednottoproducea proceedingsvolumebutmoreamultiauthoredtextbookwhichcouldserveas areferencesourceofcurrentideasincosmology. Webelievethisbookcovers atanintroductorylevelmostoftheissueswhichareconsideredimportant inmoderncosmologicalresearchandcanbereadbyagraduatestudentor researcherwhowishestoacquireareasonableknowledgeofcosmologythat will,wehope,continuetobeofvalueforyearstocome. The 1st Aegean School on Cosmology, and consequently this book, - camepossiblewiththekindsupportofmanypeopleandorganizations. We received ?nancial support from the following sources and this is gratefully acknowledged: the Municipality of Karlovassi, the North Aegean Regional Secretariat, the Prefecture of Samos, the Ministry of the Aegean, and the NationalBankofGreece. TheadministrativesupportoftheSchoolwastakenupwithgreatcare byMrs. EvelynPappaandMantoKatsianiandwewouldliketothankthem bothfortheirkinde?ortstoresolvemanyissueswhicharosebefore,during andaftertheSchool. WeacknowledgethehelpofMr. NectariosBenekoswho designedandmaintainedthewebsiteoftheSchool. Last,butnotleast,wearegratefultothesta?ofSpringer-Verlag,resp- siblefortheLectureNotesinPhysics,whoseabilitiesandhelpcontributed greatlytothe?neappearanceofthisbook. Karlovassi,Samos, SpirosCotsakis March2002 EleftheriosPapantonopoulos TableofContents PartI HistoryandOverview 1 IsNatureGeneric? SpirosCotsakis,PeterG. L. Leach...3 1. 1 Introduction...3 1. 2 PrinciplesofCosmologicalModelling...4 1. 2. 1 Spacetimes...4 1. 2. 2 TheoriesofGravity...5 1. 2. 3 MatterFields...6 1. 3 Cosmologies...6 1. 4 CosmologicalProblems...8 1. 4. 1 TheSingularityProblem...8 1. 4. 2 TheProblemofCosmicTopology...9 1. 4. 3 TheProblemofAsymptoticStates...9 1. 4. 4 GravityTheoriesandtheEarlyUniverse...11 1. 5Outlook ...12 References...14 2 EvolutionofIdeasinModernCosmology AndreasParaskevopoulos...16 2. 1 Introduction...16 2. 2 TheBeginningsofModernCosmology(1917-1950)...17 2. 3 Cosmology1950-1970:HotBigBang, SingularitiesandQuantumApproach...20 2. 4 Cosmology1970-1990:Chaotic,In?ationary, QuantumandAlternative...22 2. 5ConclusionsandOutlook ...25 References...26 VIII TableofContents PartII MathematicalCosmology 3ConstraintsandEvolutioninCosmology YvonneChoquet-Bruhat,JamesW. York...29 3. 1 Introduction...29 3. 2 MovingFrameFormulas...30 3. 2. 1 FrameandCoframe...30 3. 2. 2 Metric...31 3. 2. 3 Connection...31 3. 2. 4 Curvature ...32 3. 3 (n+1)-SplittingAdaptedtoSpaceSlices ...33 3. 3. 1 De?nitions...33 3. 3. 2 StructureCoe?cients...34 3. 3. 3 SplittingoftheConnection ...
XMM satellites were also presented. Concerning extra-galactic cartography, res- ults from the local universe were discussed, like the distribution of super-clusters, and methods to be used with the VLT and the Planck and Hersehe! (ESA, 2007) satellites. The latest results from the 2dF galaxy redshift survey were also debated. The Organization of this workshop is indebted to the colleagues of the Local Organizing Comittee for the help and good humour provided before, during and after the workshop. Special thanks are due to Carlos Martins for the great help and effort provided in the critical moments. We acknowledge the financial support from FCT/Portugal under POCTI Pro- gram from Quadro Comunitario de Apoio III that also made possible the public- ation of these Proceedings and to Sociedade Portuguesa de Astronomia without which the organization of this workshop would not be possible. Guest Editors LIST OF PARTICIPANTS Barbosa, Domingos (barbosa@supernova. ist. utl. pt) CENTRA-Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon, Por- tugal Bartlett, James G. (bartlett@cdf. in2p3. fr) APC-PCC/ College de France, 11 pl. Marrelin -Berthelot, 75231 Paris Cedex 05, France Blanchard, Alain (alain. blanchar@astro. obs-mip. fr) Observatoire Astronomique, Midi-Pyrenees, 14 Avenue Ed. Belin, 31400 Toulouse, France Blinnikov, Sergey (sergei. blinnikov@i tep. ru) Institute of Theoretical and Experimental Physics, B. Cheremushk 25, 117218, Moscow, Russia Bouchet, Fran
Is relativity Jewish? The Nazis denigrated Albert Einstein's revolutionary theory by calling it "Jewish science," a charge typical of the ideological excesses of Hitler and his followers. Philosopher of science Steven Gimbel explores the many meanings of this provocative phrase and considers whether there is any sense in which Einstein's theory of relativity is Jewish. Arguing that we must take seriously the possibility that the Nazis were in some measure correct, Gimbel examines Einstein and his work to explore how beliefs, background, and environment may-or may not-have influenced the work of the scientist. You cannot understand Einstein's science, Gimbel declares, without knowing the history, religion, and philosophy that influenced it. No one, especially Einstein himself, denies Einstein's Jewish heritage, but many are uncomfortable saying that he was being a Jew while he was at his desk working. To understand what "Jewish" means for Einstein's work, Gimbel first explores the many definitions of "Jewish" and asks whether there are elements of Talmudic thinking apparent in Einstein's theory of relativity. He applies this line of inquiry to other scientists, including Isaac Newton, Rene Descartes, Sigmund Freud, and Emile Durkheim, to consider whether their specific religious beliefs or backgrounds manifested in their scientific endeavors. Einstein's Jewish Science intertwines science, history, philosophy, theology, and politics in fresh and fascinating ways to solve the multifaceted riddle of what religion means-and what it means to science. There are some senses, Gimbel claims, in which Jews can find a special connection to E = mc2, and this claim leads to the engaging, spirited debate at the heart of this book.
This book looks at answers to the biggest questions in astronomy - the questions of how the planets, stars, galaxies and the universe were formed. Over the last decade, a revolution in observational astronomy has produced possible answers to three of these questions. This book describes this revolution. The one question for which we still do not have an answer is the question of the origin of the universe. In the final chapter, the author looks at the connection between science and philosophy and shows how new scientific results have laid the groundwork for the first serious scientific studies of the origin of the universe.
This is a fascinating and enjoyable popular science book on gravity and black holes. It offers an absorbing account on the history of research on the universe and gravity from Aristotle via Copernicus via Newton to Einstein. The author possesses high literary qualities and is celebrated relativist. The physics of black holes constitutes one of the most fascinating chapters in modern science. At the same time, there is a fanciful quality associated with this strange and beautiful entity. The black hole story is undoubtedly an adventure through physics, philosophy, history, fiction and fantasy. This book is an attempt to blend all these elements together.
An international conference entitled "Zdenek Kopal's Binary Star Legacy" was held on the occasion of the late Professor Kopal's 90th birthday in his home town of Litomy l/Czech Republic and dedicated to the memory of one of the leading astronomers of the 20th century. Professor Kopal, who devoted 60 years of his scientific life to the exploration of close binary systems, initiated a breakthrough in this field with his description of binary components as non-spherical stars deformed by gravity, with surfaces following Roche equipotentials. Such knowledge triggered the development of new branches of astrophysics dealing with the structure and evolution of close binaries and the interaction effects displayed by exciting objects such as cataclysmic variables, symbiotic stars or X-ray binaries. Contributions to this conference included praise of the achievements of a great astronomer and personal reminiscences brought forward by Kopal's former students and colleagues, and reflected the state of the art of the dynamically evolving field of binary research, which owes so much to the pioneering work of Zdenek Kopal."
The idea to hold a workshop on globular clusters in Concepcion emerged during 2005 out of a variety of circumstances. Four years had passed since the IAUSymposium 207 onExtragalactic Globular Clusters inPuc' on, atime span, which we thought to be long enough for justifying a new meeting with theintent toreviewthemostrecentdevelopments inthe?eld of extragalactic stars clusters. Originally intended to be a small-scale workshop, the response from the community was overwhelming so that only a full-scale international conferencewas abletocopewith thenumerousrequestsfortalksandposters. Finally, about 160 participants gathered in Concepci' on on March 6th, 2006. The venue was the university lecture hall located in the facultad de - manidadesyartesoftheUniversidaddeConcepci' on.Posterswereexposedin the lobby of the faculty building. The weather was as good as one can reas- ablyexpectfromalatesummerinConcepci' on.Althoughtheprogrammewas so tight that separate poster sessions other than those during co?ee breaks could not be accomodated, posters received a lot of attention. From the ?rst to the last talk, the atmosphere was inspiring and the conference could keep its tension for ?ve full days. This clearly shows that the attraction which globular clusters exercise on astrophysicists of quite di?erent ?avours, is as strong as ever.
The lectures that four authors present in this volume investigate core topics related to the accelerated expansion of the Universe. Accelerated expansion occured in the ?36 very early Universe - an exponential expansion in the in ationary period 10 s after the Big Bang. This well-established theoretical concept had rst been p- posed in 1980 by Alan Guth to account for the homogeneity and isotropy of the observable universe, and simultaneously by Alexei Starobinski, and has since then been developed by many authors in great theoretical detail. An accelerated expansion of the late Universe at redshifts z< 1 has been disc- ered in 1998; the expansion is not slowing down under the in uence of gravity, but is instead accelerating due to some uniformly distributed, gravitationally repulsive substance accounting for more than 70% of the mass-energy content of the U- verse, which is now known as dark energy. Its most common interpretation today is given in terms of the so-called CDM model with a cosmological constant .
"IT WAS ONLY A MATTER OF TIME...." Once widely considered an impossibility--the stuff of science fiction novels--time travel may finally be achieved in the twenty-first century. In "Breaking the Time Barrier," bestselling author Jenny Randles reveals the nature of recent, breakthrough experiments that are turning this fantasy into reality. The race to build the first time machine is a fascinating saga that began about a century ago, when scientists such as Marconi and Edison and Einstein carried out research aimed at producing a working time machine. Today, physicists are conducting remarkable experiments that involve slowing the passage of information, freezing light, and breaking the speed of light--and thus the time barrier. In the 1960s we had the "space race." Today, there is a "time race" involving an underground community of working scientists who are increasingly convinced that a time machine of some sort is finally possible. Here, Randles explores the often riveting motives of the people involved in this quest (including a host of sincere, if sometimes misguided amateurs), the consequences for society should time travel become a part of everyday life, and what evidence might indicate that it has already become reality. For, if time travel is going to happen--and some Russian scientists already claim to have achieved it in a lab--then its effects may already be apparent.
Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected. With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.
This book provides an introduction to Quantum Chromodynamics (QCD), the theory of strong interactions. It covers in full detail both the theoretical foundations and the experimental tests of the theory. Although the experimental chapters focus on recent measurements, the subject is placed into historical perspective by also summarizing the steps which lead to the formulation of QCD. Measurements are discussed as they were performing by the LEP experiments at CERN, or at hadron-hadron and lepton-hadron colliders such as the TEVATRON at Fermilab and HERN at DESY. Emphasis is placed on high energy tests of QCD, such as measurements of the strong coupling constant, investigations of the non-abelian structure of the underlying gauge group, determinations of nucleon structure functions, and studies of the non-perturbative hadronization process. This excellent text gives a detailed overview of how QCD developed in the 20th century and where we stand with respect to a quantitative understanding after the turn of the millenium. The text is intended for graduate and postgraduate students as well as researchers, and includes numerous problems and solutions. |
You may like...
Advances in Quantum Monte Carlo
Shigenori Tanaka, Stuart M. Rothstein, …
Hardcover
R5,469
Discovery Miles 54 690
Intrinsic Time Geometrodynamics: At One…
Chopin Soo, Hoi-lai Yu
Hardcover
R2,378
Discovery Miles 23 780
Revealing the Most Energetic Light from…
David Carreto Fidalgo
Hardcover
R2,663
Discovery Miles 26 630
|