![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Relativity physics > General
This book is written for theoretical and mathematical physicists and mat- maticians interested in recent developments in complex general relativity and their application to classical and quantum gravity. Calculations are presented by paying attention to those details normally omitted in research papers, for pedagogical r- sons. Familiarity with fibre-bundle theory is certainly helpful, but in many cases I only rely on two-spinor calculus and conformally invariant concepts in gravitational physics. The key concepts the book is devoted to are complex manifolds, spinor techniques, conformal gravity, ?-planes, ?-surfaces, Penrose transform, complex 3 1 - - space-time models with non-vanishing torsion, spin- fields and spin- potentials. 2 2 Problems have been inserted at the end, to help the reader to check his und- standing of these topics. Thus, I can find at least four reasons for writing yet another book on spinor and twistor methods in general relativity: (i) to write a textbook useful to - ginning graduate students and research workers, where two-component spinor c- culus is the unifying mathematical language.
Soliton theory is an important branch of applied mathematics and mathematical physics. An active and productive field of research, it has important applications in fluid mechanics, nonlinear optics, classical and quantum fields theories etc. This book presents a broad view of soliton theory. It gives an expository survey of the most basic ideas and methods, such as physical background, inverse scattering, Backl nd transformations, finite-dimensional completely integrable systems, symmetry, Kac-moody algebra, solitons and differential geometry, numerical analysis for nonlinear waves, and gravitational solitons. Besides the essential points of the theory, several applications are sketched and some recent developments, partly by the authors and their collaborators, are presented.
The Joint European and National Astronomical Meeting (JENAM) of 2002, was held in Porto - Portugal (2-7 September 2002), corresponding to the I ph Meeting of the European Astronomical Society (EAS) and the IJ! En- contra Nacional de Astronomia e Astroftsica (12ENAA) of the Sociedade Portuguesa de Astronomia (SPA). Portugal has a small and young community of researchers in Astronomy. This meeting have had an important role in marking the beginning of what we expect to be a new phase for Astronomy in Portugal. The fact that we have chosen to address '"the future" reflects this will of the Portuguese com- munity to share and discuss our commitment for the next decades with our colleagues. The meeting, titled "The Unsolved Universe: Challenges for the Fu- ture", aimed at discussing some of the major research programmes and objec- tives for the next decades. The scientific programme included the plenary ses- sions (invited reviews and highlight talks), whose contributions are published in this book, and several workshops on more specific topics.
The majority of books dealing with prospects for interstellar flight tackle the problem of the propulsion systems that will be needed to send a craft on an interstellar trajectory. The proposed book looks at two other, equally important aspects of such space missions, and each forms half of this two part book. Part 1 looks at the ways in which it is possible to exploit the focusing effect of the Sun as a gravitational lens for scientific missions to distances of 550 AU and beyond into interstellar space. The author explains the mechanism of the Sun as a gravitational lens, the scientific investigations which may be carried out along the way to a distance of 550 AU (and at the 550 AU sphere itself), the requirements for exiting the Solar System at the highest speed and a range of project ideas for missions entering interstellar space. Part 2 of the book deals with the problems of communicating between an interstellar spaceship and the Earth, especially at very high speeds. Here the author assesses a range of mathematical tools relating to the Karhunen-Loeve Transform (KLT) for optimal telecommunications, technical topics that may one day enable humans flying around the Galaxy to keep in contact with the Earth. This part of the book opens with a summary of the author's 2003 Pe ek Lecture presented at the IAC in Bremen, which introduces the concept of KLT for engineers and 'newcomers' to the subject. It is planned to include a DVD containing the full mathematical derivations of the KLT for those interested in this important mathematical tool whilst the text itself will contain the various results without outlines of the mathematical proofs. Astronautical engineers will thus be able to see the application of the results without getting bogged down in the mathematics."
This book is a comprehensive reference on differential geometry. It shows that Maxwell, Dirac and Einstein fields, which were originally considered objects of a very different mathematical nature, have representatives as objects of the same mathematical nature. The book also analyzes some foundational issues of relativistic field theories. All calculation procedures are illustrated by many exercises that are solved in detail.
Relativistic quantum electrodynamics, which describes the electromagneticinteractions of electrons and atomic nuclei, provides the basis for modeling the electronic structure of atoms, molecules and solids and of their interactions with photons and other projectiles. The theory underlying the widely used GRASP relativistic atomic structure program, the DARC electron-atom scattering code and the new BERTHA relativistic molecular structure program is presented in depth, together with computational aspects relevant to practical calculations. Along with an understanding of the physics and mathematics, the reader will gain some idea of how to use these programs to predict energy levels, ionization energies, electron affinities, transition probabilities, hyperfine effects and other properties of atoms and molecules.
This volume is composed of extensive and detailed notes from the lectures given at the 40th Karpacz Winter School. This school focussed on quantum gravity phenomenology with emphasis on its relation to observational astrophysics and cosmology. These notes have been carefully edited with the aim to give advanced students and young researchers a balanced and accessible introduction to a rather heavily mathematical subject.
Back in1954,a paper[2] by Bondi and Gold was to pick upona much olderqu- tion and raise anew one that would trigger another longdebate. The old question hadbeenaroundsince the beginning of the twentiethcentury, whenBorn?rstraised it[1] and others followed suit. This was the question of whethera uniformly acc- erated charge (in?at spacetime) would radiateelectromagnetic energy. The new question arose from the claim by Bondi and Gold that (inthe contextof general relativity now)a static charge ina static gravitational ?eld cannot radiateenergy. If this were the case,thenaparticular version of the equivalence principle would thereby be contradicted. This book reviews the problem discovered by Bondi and Gold and discusses the ensuingdebate ascarried on by Fulton and Rohrlich [3], DeWitt and Brehme [4], Mould [5], Boulware [6], andParrott [7].Various solutionshave been proposed by the above (and otherswhoare not discussed here). One of the aims here will be to putforward arather different solution to Bondi and Gold's radiation problem. So eventhough the paperscited are discussed to a large extent in chronological order, the reason for writing this is not justto produce an historical reference. Andeven though the version of general relativity applied hereis entirely consensual, every one of these papersis criticised on at leastoneimportant count, soI suspectthat the resultas a whole should not be described asconsensual.
Each contribution is an article in itself, and great effort has been made by the authors to be lucid and not too technical. A few brief highlights of the round-table discussions are given between the chapters. Topics include: Quantum non-locality, the measurement problem, quantum insights into relativity, cosmology and thermodynamics, and possible bearings of quantum mechanics to biology and consciousness. Authors include Yakir Aharanov and Anton Zeilinger, plus Nobel laureates Anthony J. Leggett (2003) and Gerardus t Hooft (1999). Foreword written by Sir Roger Penrose, best-selling author (The Emperor's New Mind) and world-renowned mathematical physicist.
This is a fascinating and enjoyable popular science book on gravity and black holes. It offers an absorbing account on the history of research on the universe and gravity from Aristotle via Copernicus via Newton to Einstein. The author possesses high literary qualities and is celebrated relativist. The physics of black holes constitutes one of the most fascinating chapters in modern science. At the same time, there is a fanciful quality associated with this strange and beautiful entity. The black hole story is undoubtedly an adventure through physics, philosophy, history, fiction and fantasy. This book is an attempt to blend all these elements together.
Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected. With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.
Following on from a previous volume on Special Relativity, Andrew Steane's second volume on General Relativity and Cosmology is aimed at advanced undergraduate or graduate students undertaking a physics course, and encourages them to expand their knowledge of Special Relativity. Beginning with a survey of the main ideas, the textbook goes on to give the methodological foundations to enable a working understanding of astronomy and gravitational waves (linearized approximation, differential geometry, covariant differentiation, physics in curved spacetime). It covers the generic properties of horizons and black holes, including Hawking radiation, introduces the key concepts in cosmology and gives a grounding in classical field theory, including spinors and the Dirac equation, and a Lagrangian approach to General Relativity. The textbook is designed for self-study and is aimed throughout at clarity, physical insight, and simplicity, presenting explanations and derivations in full, and providing many explicit examples.
This compact yet informative Guide presents an accessible route through Special Relativity, taking a modern axiomatic and geometrical approach. It begins by explaining key concepts and introducing Einstein's postulates. The consequences of the postulates - length contraction and time dilation - are unravelled qualitatively and then quantitatively. These strands are then tied together using the mathematical framework of the Lorentz transformation, before applying these ideas to kinematics and dynamics. This volume demonstrates the essential simplicity of the core ideas of Special Relativity, while acknowledging the challenges of developing new intuitions and dealing with the apparent paradoxes that arise. A valuable supplementary resource for intermediate undergraduates, as well as independent learners with some technical background, the Guide includes numerous exercises with hints and notes provided online. It lays the foundations for further study in General Relativity, which is introduced briefly in an appendix.
Der vorliegende Klassiker bietet Studierenden und Forschenden in den Gebieten der Theoretischen und Mathematischen Physik eine ideale Einfuhrung in die Differentialgeometrie und Topologie. Beides sind wichtige Werkzeuge in den Gebieten der Astrophysik, der Teilchen- und Festkoerperphysik. Das Buch fuhrt durch: - Pfadintegralmethode und Eichtheorie - Mathematische Grundlagen von Abbildungen, Vektorraumen und Topologie - Fortgeschrittene Konzepte der Geometrie und Topologie und deren Anwendungen im Bereich der Flussigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie - Eine Zusammenfuhrung von Geometrie und Topologie: Faserbundel, charakteristische Klassen und Indextheoreme - Anwendungen von Geometrie und Topologie in der modernen Physik: Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer geometrischen Perspektive
Pulsars are rapidly spinning neutron stars, the collapsed cores of once massive stars that ended their lives as supernova explosions. In this book, Geoff McNamara explores the history, subsequent discovery and contemporary research into pulsar astronomy. The story of pulsars is brought right up to date with the announcement in 2006 of a new breed of pulsar, Rotating Radio Transients (RRATs), which emit short bursts of radio signals separated by long pauses. These may outnumber conventional radio pulsars by a ratio of four to one. Geoff McNamara ends by pointing out that, despite the enormous success of pulsar research in the second half of the twentieth century, the real discoveries are yet to be made including, perhaps, the detection of the hypothetical pulsar black hole binary system by the proposed Square Kilometre Array - the largest single radio telescope in the world.
Einstein's energy-momentum relation is applicable to particles of all speeds, including the particle at rest and the massless particle moving with the speed of light. If one formula or formalism is applicable to all speeds, we say it is 'Lorentz-covariant.' As for the internal space-time symmetries, there does not appear to be a clear way to approach this problem. For a particle at rest, there are three spin degrees of freedom. For a massless particle, there are helicity and gauge degrees of freedom. The aim of this book is to present one Lorentz-covariant picture of these two different space-time symmetries. Using the same mathematical tool, it is possible to give a Lorentz-covariant picture of Gell-Mann's quark model for the proton at rest and Feynman's parton model for the fast-moving proton. The mathematical formalism for these aspects of the Lorentz covariance is based on two-by-two matrices and harmonic oscillators which serve as two basic scientific languages for many different branches of physics. It is pointed out that the formalism presented in this book is applicable to various aspects of optical sciences of current interest.
The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have privileged a geometric approach, the author uses an algebraic approach which can be introduced as a tensor product of quaternion algebras and provides a unified calculus for much of physics. The book proposes a pedagogical introduction to this new calculus, based on quaternions, with applications mainly in special relativity, classical electromagnetism and general relativity. The volume is intended for students, researchers and instructors in physics, applied mathematics and engineering interested in this new quaternionic Clifford calculus.
Based on a course taught for years at Oxford, this book offers a concise exposition of the central ideas of general relativity. The focus is on the chain of reasoning that leads to the relativistic theory from the analysis of distance and time measurements in the presence of gravity, rather than on the underlying mathematical structure. Includes links to recent developments, including theoretical work and observational evidence, to encourage further study.
Black holes are the most extreme objects in the universe, yet every galaxy harbours a black hole at its centre. In Einstein's Monsters, Chris Impey builds on this profound discovery to explore questions at the cutting edge of cosmology, such as what happens if you travel into a black hole and whether the galaxy or its black hole came first. Impey chronicles the role black holes have played in theoretical physics. He then describes the phenomena that scientists have witnessed while observing black holes: dozens of stars swarming around the dark object at the centre of our galaxy; black holes performing gravitational waltzes with normal stars; the cymbal clash of two black holes colliding, releasing ripples in spacetime. Einstein's Monsters is the incredible story of one of the most enigmatic entities in nature.
In this short book, renowned theoretical physicist and author Carlo Rovelli gives a straightforward introduction to Einstein's General Relativity, our current theory of gravitation. Focusing on conceptual clarity, he derives all the basic results in the simplest way, taking care to explain the physical, philosophical and mathematical ideas at the heart of "the most beautiful of all scientific theories". Some of the main applications of General Relativity are also explored, for example, black holes, gravitational waves and cosmology, and the book concludes with a brief introduction to quantum gravity. Written by an author well known for the clarity of his presentation of scientific ideas, this concise book will appeal to university students looking to improve their understanding of the principal concepts, as well as science-literate readers who are curious about the real theory of General Relativity, at a level beyond a popular science treatment.
2 Homogeneous superconducting state 210 3 Superconducting phases with broken space symmetries 213 4 Flavor asymmetric quark condensates 219 5 Concluding remarks 221 Acknowledgments 222 References 223 Neutral Dense Quark Matter 225 Mei Huang and Igor Shovkovy 1 Introduction 225 2 Local charge neutrality: homogeneous phase 226 3 Global charge neutrality: mixed phase 234 4 Conclusion 238 References 238 Possibility of color magnetic superconductivity 241 Toshitaka Tatsumi, Tomoyuki Maruyama, and Eiji Nakano 1 Introduction 241 2 What is ferromagnetism in quark matter? 243 3 Color magnetic superconductivity 248 4 Chiral symmetry and magnetism 253 5 Summary and Concluding remarks 258 Acknowledgments 260 References 260 Magnetic Fields of Compact Stars with Superconducting Quark Cores 263 David M. Sedrakian, David Blaschke, and Karen M. Shahabasyan 1 Introduction 263 2 Free Energy 265 3 Ginzburg-Landau equations 267 4 Vortex Structure 269 5 Solution of Ginzburg-Landau Equations 271 6 The Magnetic Field Components 273 7 Summary 275 Acknowledgments 275 References 275 Thermal Color-superconducting Fluctuations in Dense Quark Matter 277 D. N.
Neutron stars hold a central place in astrophysics, not only because they are made up of the most extreme states of the condensed matter, but also because they are, along with white dwarfs and black holes, one of the stable configurations that stars reach at the end of stellar evolution. Neutron stars posses the highest rotation rates and strongest magnetic fields among all stars. They radiate prolifically, in high energy electromagnetic radiation and in the radio band. This book is devoted to the selected lectures presented in the 6th NATO-ASI series entitled "The Electromagnetic Spectrum of Neutron Stars" in Marmaris, Turkey, on 7-18 June 2004. This ASI is devoted to the spectral properties of neutron stars. Spectral observations of neutron stars help us to understand the magnetospheric emission processes of isolated radio pulsars and the emission processes of accreting neutron stars. This volume includes spectral information from the neutron stars in broadest sense, namely neutrino and gravitational radiation along with the electromagnetic spectrum. We believe that this volume can serve as graduate level of text including the broad range of properties of neutron stars.
The historic detection of gravitational waves on September 14, 2015, prompted by the highly energetic fusion of two black holes, has made events in the universe "audible" for the first time. This expansion of the scientific sensorium has opened a new chapter in astronomy and already led to, among others, fascinating new insights about the abundance of black holes, the collision of neutron stars, and the origin of heavy chemical elements. The history of this event, which is epochal for physics, is reconstructed in this book, along with a walk-through of the main principles of how the detectors operate and a discussion of how the search for gravitational waves is conducted. The book concludes with an update of the latest detections and developments to date and a brief look into the future of this exciting research field. This book is accessible to non-specialist readers from a general audience and is also an excellent introduction to the topic for undergraduates in physics. Features: Provides an introduction to the historic discovery of gravitational waves Explains the inner workings of the detectors and the search to find the waves hidden in the data Authored by a renowned specialist involved in the ground-breaking discovery Hartmut Grote is a Professor of physics at Cardiff University, UK. His main expertise is in experimental gravitational-wave physics, and he has worked on building and improving gravitational wave detectors for over 20 years. From 2009 to 2017, he was the scientific leader of the British-German gravitational-wave detector: GEO600.
Hans Reichenbach, a philosopher of science who was one of five students in Einstein's first seminar on the general theory of relativity, became Einstein's bulldog, defending the theory against criticism from philosophers, physicists, and popular commentators. This book chronicles the development of Reichenbach's reconstruction of Einstein's theory in a way that clearly sets out all of its philosophical commitments and its physical predictions as well as the battles that Reichenbach fought on its behalf, in both the academic and popular press. The essays include reviews and responses to philosophical colleagues, such as Moritz Schlick and Hugo Dingler; polemical discussions with physicists Max Born and D. C. Miller; as well as popular articles meant to clarify aspects of Einstein's theories and set out their philosophical ramifications for the layperson. At a time when physics and philosophy were both undergoing revolutionary changes in content and method, this book is a window into the development of scientific philosophy and the role of the philosopher.
First published in 1922 and based on lectures delivered in May 1921, Albert Einstein's The Meaning of Relativity offered an overview and explanation of the then new and controversial theory of relativity. The work would go on to become a monumental classic, printed in numerous editions and translations worldwide. Now, The Formative Years of Relativity introduces Einstein's masterpiece to new audiences. This beautiful volume contains Einstein's insightful text, accompanied by important historical materials and commentary looking at the origins and development of general relativity. Hanoch Gutfreund and Jurgen Renn provide fresh, original perspectives, placing Einstein's achievements into a broader context for all readers. In this book, Gutfreund and Renn tell the rich story behind the early reception, spread, and consequences of Einstein's ideas during the formative years of general relativity in the late 1910s and 1920s. They show that relativity's meaning changed radically throughout the nascent years of its development, and they describe in detail the transformation of Einstein's work from the esoteric pursuit of one individual communicating with a handful of colleagues into the preoccupation of a growing community of physicists, astronomers, mathematicians, and philosophers. This handsome edition quotes extensively from Einstein's correspondence and reproduces historical documents such as newspaper articles and letters. Inserts are featured in the main text giving concise explanations of basic concepts, and short biographical notes and photographs of some of Einstein's contemporaries are included. The first-ever English translations of two of Einstein's popular Princeton lectures are featured at the book's end. |
![]() ![]() You may like...
Grid and Services Evolution
Norbert Meyer, Domenico Talia, …
Hardcover
R3,037
Discovery Miles 30 370
Design and Implementation of Practical…
Akshay Kumar, Ahmed Abdelhadi, …
Hardcover
R3,032
Discovery Miles 30 320
Collaborative Networks for a Sustainable…
Luis M. Camarinha-Matos, Xavier Boucher, …
Hardcover
R3,209
Discovery Miles 32 090
Privacy and Identity Management. Between…
Michael Friedewald, Stephan Krenn, …
Hardcover
R2,744
Discovery Miles 27 440
Cooperative Communications and…
Y -W Peter Hong, Wan-Jen Huang, …
Hardcover
R4,765
Discovery Miles 47 650
Dictionary Learning Algorithms and…
Bogdan Dumitrescu, Paul Irofti
Hardcover
R4,607
Discovery Miles 46 070
|