![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Relativity physics > General
This book presents a direct measurement of quantum back action, or radiation pressure noise, on a macroscopic object at room temperature across a broad bandwidth in the audio range. This noise source was predicted to be a limitation for gravitational wave interferometers in the 1980s, but it has evaded direct characterization in the gravitational wave community due to the inherent difficult of reducing thermal fluctuations below the quantum back action level. This back action noise is a potential limitation in Advanced LIGO and Advanced Virgo, and Cripe's experiment has provided a platform for the demonstration of quantum measurement techniques that will allow quantum radiation pressure noise to be reduced in these detectors. The experimental techniques Cripe developed for this purpose are also applicable to any continuous measurement operating near the quantum limit, and could lead to the possibility of observing non-classical behavior of macroscopic objects.
Astronomy in the Inca Empire was a robust and fundamental practice. The subsequent Spanish conquest of the Andes region disrupted much of this indigenous culture and resulted in a significant loss of information about its rich history. Through modern archaeoastronomy, this book helps recover and interpret some of these elements of Inca civilization. Astronomy was intricately woven into the very fabric of Andean existence and daily life. Accordingly, the text takes a holistic approach to its research, considering first and foremost the cultural context of each astronomy-related site. The chapters necessarily start with a history of the Incas from the beginning of their empire through the completion of the conquest by Spain before diving into an astronomical and cultural analysis of many of the huacas found in the heart of the Inca Empire. Over 300 color images-original artwork and many photos captured during the author's extensive field research in Machu Picchu, the Sacred Valley, Cusco, and elsewhere-are included throughout the book, adding visual insight to a rigorous examination of Inca astronomical sites and history.
This book focuses on a critical discussion of the status and prospects of current approaches in quantum mechanics and quantum field theory, in particular concerning gravity. It contains a carefully selected cross-section of lectures and discussions at the seventh conference "Progress and Visions in Quantum Theory in View of Gravity" which took place in fall 2018 at the Max Planck Institute for Mathematics in the Sciences in Leipzig. In contrast to usual proceeding volumes, instead of reporting on the most recent technical results, contributors were asked to discuss visions and new ideas in foundational physics, in particular concerning foundations of quantum field theory. A special focus has been put on the question of which physical principles of quantum (field) theory can be considered fundamental in view of gravity. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.
This monograph provides an introduction to deformations of Poincare symmetries focusing on models with a Lie group momentum space and associated non-commutative space-times. The emphasis is put on the emergence of such structures from quantum gravity, their mathematical features described in terms of Hopf algebras and applications to particle kinematics and field theory. Part I of this work focuses on the link between gravity and deformed symmetries in the case of 2+1 and 3+1 space-time dimensions. Part II is devoted to the description of classical particles with group valued momenta, their phase spaces and kinematics. The last part of these notes provides an introduction to the basic features of classical and quantum field theory on -Minkowski space-time, the prototypical example of non-commutative space-time exhibiting deformed Poincare symmetry. The text, being the first providing a detailed overview of these topics, is primarily intended for researchers and graduate students interested in non-commutative field theories and quantum gravity phenomenology.
This book consolidates the latest research on the Hadean Eon - the first 500 million years of Earth history - which has permitted hypotheses of early Earth evolution to be tested, including geophysical models that include the possibility of plate tectonic-like behavior. These new observations challenge the longstanding Hadean paradigm - based on no observational evidence - of a desiccated, lifeless, continent-free wasteland in which surface petrogenesis was largely due to extraterrestrial impacts. The eon was termed "Hadean" to reflect such a hellish environment. That view began to be challenged in 2001 as results of geochemical analyses of greater than 4 billion year old zircons from Australia emerged. These data were consistent with the zircons forming in a world much more similar to today than long thought and interpreted to indicate that sediment cycling was occurring in the presence of liquid water. This new view leaves open the possibility that life could have emerged shortly after Earth accretion. The epistemic limitations under which the old paradigm persisted are closely examined. The book is principally designed as a monograph but has the potential to be used as a text for advanced graduate courses on early Earth evolution.
It is commonly assumed that if the Sun suddenly turned into a black hole, it would suck Earth and the rest of the planets into oblivion. Yet, as prominent author and astrophysicist Jeffrey Bennett points out, black holes don't suck. With that simple idea in mind, Bennett begins an entertaining introduction to Einstein's theories of relativity, describing the amazing phenomena readers would actually experience if they took a trip to a black hole. The theory of relativity reveals the speed of light as the cosmic speed limit, the mind-bending ideas of time dilation and curvature of spacetime, and what may be the most famous equation in history: E = mc2. Indeed, the theory of relativity shapes much of our modern understanding of the universe. It is not "just a theory"-every major prediction of relativity has been tested to exquisite precision, and its practical applications include the Global Positioning System (GPS). Amply illustrated and written in clear, accessible prose, Bennett's book proves anyone can grasp the basics of Einstein's ideas. His intuitive, nonmathematical approach gives a wide audience its first real taste of how relativity works and why it is so important to science and the way we view ourselves as human beings.
The goal of this essay is to discuss the future of discovery in particle physics. Its primary motivation is the 2019 European Strategy update, which aims to determine the future experimental and theoretical priorities for particle physics. A key question is to understand what the standard theory (Standard Model) of particle physics really is, which the author argues has been a foggy notion for several decades which he clarifies. It then is to decide what motivated beyond the Standard Model theories are to be targeted by experiment. This book brightly exposes these theories, and puts current particle physics research into its historical context and points the way toward future work.
Antimatter is one of the most fascinating aspects of Particle Physics, and matter-antimatter annihilation the most energetic process in the universe. If they existed, everyday objects made of antimatter would look exactly like those made of ordinary matter, as would antimatter stars. We live surrounded by antimatter, since showers of matter and antimatter particles fall incessantly on the Earth's surface, some of them penetrating our buildings. Furthermore, many things around us - bananas, for example - actually emit antielectrons. This book first introduces the essentials of particle physics and the nature of particles and antiparticles. It describes the discovery of antimatter particles and explains how they are produced, where they are found, and how antistars could be spotted; it also introduces cosmic rays, particle accelerators, dark matter, dark energy and nuclear reactions in stars. The enigma of the matter-antimatter asymmetry in the Universe is discussed as are the very real applications of antimatter in hospitals, in industry and in cutting-edge research and technology, Non-specialist readers will find here a wealth of fascinating and accessible information to deepen their appreciation of antimatter.
The problem of quantum gravity is often viewed as the most pressing unresolved problem of modern physics: our theories of spacetime and matter, described respectively by general relativity (Einstein's theory of gravitation and spacetime) and quantum mechanics (our best theory of matter and the other forces of nature) resist unification. Covered with Deep Mist provides the first book-length treatment of the history of quantum gravity, focusing on its origins and earliest stages of development until the mid-1950s. Readers will be guided through the impacts on the problem of quantum gravity resulting from changes in the two ingredient theories, quantum theory and general relativity, which were themselves still under construction in the years studied. We examine how several of the core approaches of today were formed in an era when the field was highly unfashionable. The book aims to be accessible to a broad range of readers and goes beyond a merely technical examination to include social and cultural factors involved in the changing fortunes of the field. Suitable for both newcomers and seasoned quantum gravity professionals, the book will shine new light on this century-old, unresolved problem.
With contributions by leading theoreticians, this book presents the discoveries of hitherto hidden connections between seemingly unrelated fields of fundamental physics. The topics range from cosmology and astrophysics to nuclear-, particle- and heavy-ion science. A current example concerns the sensitivity of gravitational wave spectra to the phase structure of dense nuclear and quark matter in binary neutron star collisions. The contributions by Hanauske and Stoecker as well as Banik and Bandyopadhyay relate the consequent insights to hot dense nuclear matter created in supernova explosions and in high-energy heavy-ion collisions. Studies of the equation of state for neutron stars are also presented, as are those for nuclear matter in high-energy heavy-ion collisions. Other reviews focus on QCD-thermodynamics, charmed mesons in the quark-gluon plasma, nuclear theory, extensions to the standard general theory of relativity, new experimental developments in heavy ion collisions and renewable energy networks. The book will appeal to advanced students and researchers seeking a broad view of current challenges in theoretical physics and their interconnections.
Modern research has demonstrated that many stars are surrounded by planets-some of which might contain the right conditions to harbor life. This has only reinforced a question that has been tormenting scientists, philosophers and priests since Antiquity: Are there other inhabited worlds beyond our own? This book analyzes the many ways that humans have argued for and depicted extraterrestrial life over the centuries. The first known texts about the subject date from as early as the 6th century BC. Since that time, countless well-known historical characters like Lucretius, Aristotle, Thomas Aquinas, Cusanus, Bruno, Kepler, Descartes, and Huygens contributed to the debate; here, their lesser known opinions on the subject are studied in detail. It is often difficult for the modern mind to follow the thinking of our ancestors, which can only be understood when placed in the relevant context. The book thus extends its scope to the evolution of ideas about cosmology in general, as well as the culture in which these great thinkers wrote. The research is presented with the author's insights and humor, making this an easy and enjoyable read.
Starting with the idea of an event and finishing with a description of the standard big-bang model of the Universe, this textbook provides a clear, concise and up-to-date introduction to the theory of general relativity, suitable for final-year undergraduate mathematics or physics students. Throughout, the emphasis is on the geometric structure of spacetime, rather than the traditional coordinate-dependent approach. This allows the theory to be pared down and presented in its simplest and most elegant form. Topics covered include flat spacetime (special relativity), Maxwell fields, the energy-momentum tensor, spacetime curvature and gravity, Schwarzschild and Kerr spacetimes, black holes and singularities, and cosmology. In developing the theory, all physical assumptions are clearly spelled out and the necessary mathematics is developed along with the physics. Exercises are provided at the end of each chapter and key ideas in the text are illustrated with worked examples. Solutions and hints to selected problems are also provided at the end of the book. This textbook will enable the student to develop a sound understanding of the theory of general relativity, and all the necessary mathematical machinery.
Starting with the idea of an event and finishing with a description of the standard big-bang model of the Universe, this textbook provides a clear, concise and up-to-date introduction to the theory of general relativity, suitable for final-year undergraduate mathematics or physics students. Throughout, the emphasis is on the geometric structure of spacetime, rather than the traditional coordinate-dependent approach. This allows the theory to be pared down and presented in its simplest and most elegant form. Topics covered include flat spacetime (special relativity), Maxwell fields, the energy-momentum tensor, spacetime curvature and gravity, Schwarzschild and Kerr spacetimes, black holes and singularities, and cosmology. In developing the theory, all physical assumptions are clearly spelled out and the necessary mathematics is developed along with the physics. Exercises are provided at the end of each chapter and key ideas in the text are illustrated with worked examples. Solutions and hints to selected problems are also provided at the end of the book. This textbook will enable the student to develop a sound understanding of the theory of general relativity, and all the necessary mathematical machinery.
This book focuses on the equation of state (EoS) of compact stars, particularly the intriguing possibility of the "quark star model." The EoS of compact stars is the subject of ongoing debates among astrophysicists and particle physicists, due to the non-perturbative property of strong interaction at low energy scales. The book investigates the tidal deformability and maximum mass of rotating quark stars and triaxially rotating quark stars, and compares them with those of neutron stars to reveal significant differences. Lastly, by combining the latest observations of GW170817, the book suggests potential ways to distinguish between the neutron star and quark star models.
Einstein's general theory of relativity is widely considered to be one of the most elegant and successful scientific theories ever developed, and it is increasingly being taught in a simplified form at advanced undergraduate level within both physics and mathematics departments. Due to the increasing interest in gravitational physics, in both the academic and the public sphere, driven largely by widely-publicised developments such as the recent observations of gravitational waves, general relativity is also one of the most popular scientific topics pursued through self-study. Modern General Relativity introduces the reader to the general theory of relativity using an example-based approach, before describing some of its most important applications in cosmology and astrophysics, such as gamma-ray bursts, neutron stars, black holes, and gravitational waves. With hundreds of worked examples, explanatory boxes, and end-of-chapter problems, this textbook provides a solid foundation for understanding one of the towering achievements of twentieth-century physics.
This book offers an overview of the fundamental dynamical processes, which are necessary to understand astrophysical phenomena, from the viewpoint of hydrodynamics, magnetohydrodynamics, and radiation hydrodynamics. The book consists of three parts: The first discusses the fundamentals of hydrodynamics necessary to understand the dynamics of astrophysical objects such as stars, interstellar gases and accretion disks. The second part reviews the interactions between gases and magnetic fields on fluid motions - the magnetohydrodynamics - highlighting the important role of magnetic fields in dynamical phenomena under astrophysical environments. The third part focuses on radiation hydrodynamics, introducing the hydrodynamic phenomena characterized by the coupling of radiation and gas motions and further on relativistic radiation hydrodynamics. Intended as a pedagogical introduction for advanced undergraduate and graduate students, it also provides comprehensive coverage of the fundamentals of astrophysical fluid dynamics, making it an effective resource not only for graduate courses, but also for beginners wanting to learn about hydrodynamics, magnetohydrodynamics, and radiation hydrodynamics in astrophysics independently.
This work is an introduction to the totality of the metaphysical philosophy of nature of Hedwig Conrad-Martius (1888-1966). Her own training and inclination as a realist phenomenologist enables a unique perspective on central issues in modern and contemporary (twentieth century) theoretical biology and physics. Here we find novel theories of, e.g., space and time, as well as development and evolution. This work is thus of interest to anyone studying the history of the phenomenological movement as well as religious cosmology. The philosophical basis for this cosmology is Conrad-Martius' "realontology" which is a phenomenological account of the essence of appearing reality. The full elaboration of the modes of appearing of what is real enables the unfolding of an analogical theory of "selfness" within the order of nature culminating in an account of the coming to be of humans, for whom there is an essentially distinctive world- and self-manifestation for which she reserves the term "spirit." Key to her position is the revival of ancient metaphysical themes in new transformed guises, especially potentiality and entelechy. Nature's status, as a self-actuation of world-constituting essence-entelechies, places Conrad-Martius in the middle of philosophical-theological discussions of, e.g., the hermeneutical mandate of demythologization as well as the nature of evolution. Of special interest is her insistence on both nature's self-actuating and evolving powers and a robust theory of creation.
This book presents an alternative representation of Einstein's Special Theory of Relativity, which makes Special Relativity much more comprehensible. Moreover, one will come across a fundamental relationship between the Special Theory of Relativity and the mechanics of space lattice. In all previous formulations, the Einsteinian special principle of relativity, in one or the other form is used as the starting point for Special Relativity. In correspondence to this principle, one takes it as granted apriori, that all observers independent of their uniform motion to each other measure one and the same propagation velocity of a light signal. This book is thought of as a lecture for physicists, mathematicians and computer scientists and concentrates on the students of these fields. The book should reach a broad circle of interested readers from the fields of natural sciences and philosophy and provide and invigorating experience for engineers.
Jayme Tiomno (1920-2011) was one of the most influential Brazilian physicists of the 20th century, interacting with many of the renowned physicists of his time, including John Wheeler and Richard Feynman, Eugene Wigner, Chen Ning Yang, David Bohm, Murray Gell-Mann, Remo Ruffini, Abdus Salam, and many others. This biography tells the sometimes romantic, often discouraging but finally optimistic story of a dedicated scientist and educator from a developing country who made important contributions to particle physics, gravitation, cosmology and field theory, and to the advancement of science and of scientific education, in many institutions in Brazil and elsewhere. Drawing on unpublished documents from archives in Brazil and the US as well as private sources, the book traces Tiomno's long life, following his role in the establishment of various research facilities and his tribulations during the Brazilian military dictatorship. It presents a story of progress and setbacks in advancing science in Brazil and beyond, and of the persistence and dedication of a talented physicist who spent his life in search of scientific truth.
The wealth of recent cosmic microwave background and large-scale structure data has transformed the field of cosmology. These observations have not only become precise enough to answer questions about the universe on the largest scales, but also to address puzzles in the microscopic description of Nature. This thesis investigates new ways of probing the early universe, the properties of neutrinos and the possible existence of other light particles. In particular, based on detailed theoretical insights and novel analyses, new evidence for the cosmic neutrino background is found in the distribution of galaxies and in cosmic microwave background data. This tests the Standard Model of particle physics and the universe back to a time when it was about one second old. Furthermore, it is demonstrated that future observations will be capable of probing physics beyond the Standard Model since they can achieve a particular target which would either allow the detection of any light particles that have ever been in thermal equilibrium or imply strong bounds on their properties.
The 2015 centenary of the publication of Einstein's general theory of relativity, and the first detection of gravitational waves have focused renewed attention on the question of whether Einstein was right. This review of experimental gravity provides a detailed survey of the intensive testing of Einstein's theory of gravity, including tests in the emerging strong-field dynamical regime. It discusses the theoretical frameworks needed to analyze gravitational theories and interpret experiments. Completely revised and updated, this new edition features coverage of new alternative theories of gravity, a unified treatment of gravitational radiation, and the implications of the latest binary pulsar observations. It spans the earliest tests involving the Solar System to the latest tests using gravitational waves detected from merging black holes and neutron stars. It is a comprehensive reference for researchers and graduate students working in general relativity, cosmology, particle physics and astrophysics.
This book discusses some of the open questions addressed by researchers in general relativity. Photons and particles play important roles in the theoretical framework, since they are involved in analyzing and measuring gravitational fields and in constructing mathematical models of gravitational fields of various types. The authors highlight this aspect covering topics such as the construction of models of Bateman electromagnetic waves and analogous gravitational waves, the studies of gravitational radiation in presence of a cosmological constant and the gravitational compass or clock compass for providing an operational way of measuring a gravitational field. The book is meant for advanced students and young researchers in general relativity, who look for an updated text which covers in depth the calculations and, equally, takes on new challenges. The reader, along the learning path, is stimulated by provocative examples interspersed in the text that help to find novel representations of the uses of particles and photons.
The Theory of Special Relativity is one of the most profound discoveries of the twentieth century. Einstein's Mirror blends a simple, nonmathematical account of the theory of special relativity and gravitation with a description of the way experiments have triumphantly supported these theories. The authors explore the many applications of relativity in atomic and nuclear physics, which are many and range from satellite navigation systems, particle accelerators and nuclear power to quantum chemistry, antimatter and black holes. The book also features a superb collection of photographs and includes amusing anecdotes and biographies about the early pioneers. In the closing chapter, the authors examine the influence of Einstein's relativity on the development of science fiction. General readers with an interest in science will enjoy and benefit from this fascinating and accessible introduction to one of the most important areas of physics.
With the aid of entertaining short stories, anecdotes, lucid explanations and straight-forward figures, this book challenges the perception that the world of physics is inaccessible to the non-expert. Beginning with Neanderthal man, it traces the evolution of human reason and understanding from paradoxes and optical illusions to gravitational waves, black holes and dark energy. On the way, it provides insights into the mind-boggling advances at the frontiers of physics and cosmology. Unsolved problems and contradictions are highlighted, and contentious issues in modern physics are discussed in a non-dogmatic way in a language comprehensible to the non-scientist. It has something for everyone.
This book presents the first English translation of the original French treatise "La Physique d'Einstein" written by the young Georges Lemai tre in 1922, only six years after the publication of Albert Einstein's theory of General Relativity. It includes an historical introduction and a critical edition of the original treatise in French supplemented by the author's own later additions and corrections. Monsignor Georges Lemai tre can be considered the founder of the "Big Bang Theory" and a visionary architect of modern Cosmology. The scientific community is only beginning to grasp the full extent of the legacy of this towering figure of 20th century physics. Against the best advice of the greatest names of his time, the young Lemai tre was convinced, solely through the study of Einstein's theory of General Relativity, that space and time must have had a beginning with a tremendous "Big Bang" from a "quantum primeval atom" resulting in an ever-expanding Universe with a positive cosmological constant. But how did the young Lemai tre, essentially on his own, come to grips with the physics of Einstein? A year before his ordination as a diocesan priest, he submitted the audacious treatise, published in this book, that was to earn him Fellowships to study at Cambridge, MIT and Harvard, and launched him on a scientific path of ground-breaking discoveries. Almost a century after Lemai tre's seminal publications of 1927 and 1931, this highly pedagogical treatise is still of timely interest to young minds and remains of great value from a history of science perspective. |
You may like...
Advances in Quantum Monte Carlo
Shigenori Tanaka, Stuart M. Rothstein, …
Hardcover
R5,469
Discovery Miles 54 690
Advances in Quantum Monte Carlo
James B Anderson, Stuart M. Rothstein
Hardcover
R2,690
Discovery Miles 26 900
The Evolutionary Cosmos - Outside-In…
Richard Westberg, Cal Orey
Hardcover
R1,032
Discovery Miles 10 320
|