![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Relativity physics > General
This compact yet informative Guide presents an accessible route through Special Relativity, taking a modern axiomatic and geometrical approach. It begins by explaining key concepts and introducing Einstein's postulates. The consequences of the postulates - length contraction and time dilation - are unravelled qualitatively and then quantitatively. These strands are then tied together using the mathematical framework of the Lorentz transformation, before applying these ideas to kinematics and dynamics. This volume demonstrates the essential simplicity of the core ideas of Special Relativity, while acknowledging the challenges of developing new intuitions and dealing with the apparent paradoxes that arise. A valuable supplementary resource for intermediate undergraduates, as well as independent learners with some technical background, the Guide includes numerous exercises with hints and notes provided online. It lays the foundations for further study in General Relativity, which is introduced briefly in an appendix.
This book collates papers presented at two international conferences (held at the Australian National University in 2018 and Birkbeck College London in 2019) exploring the relationships between big history and astrobiology and their wider implications for society. These two relatively new academic disciplines aim to integrate human history with the wider history of the universe and the search for life elsewhere. The book will show that, despite differences in emphasis, big history and astrobiology share much in common, especially their interdisciplinary approaches and the cosmic and evolutionary perspectives that they both engender. Specifically, the book addresses the unified, all-embracing, nature of knowledge, the impact of big history on humanity and the world at large, the possible impact of SETI on astrobiology and big history, the cultural signature of Earth's inhabitants beyond our own planet, and the political implications of a planetary worldview. The principal readership is envisaged to comprise scholars working in the fields of astrobiology, big history and space exploration interested in forging interdisciplinary links between these diverse topics, together with educators, and a wider public, interested in the societal implications of the cosmic and evolutionary perspectives engendered by research in these fields.
Of all philosophers of the 20th century, few built more bridges between academic disciplines than Karl Popper. He contributed to a wide variety of fields in addition to the epistemology and the theory of scientific method for which he is best known. This book illustrates and evaluates the impact, both substantive and methodological, that Popper has had in the natural and mathematical sciences. The topics selected include quantum mechanics, evolutionary biology, cosmology, mathematical logic, statistics, and cognitive science. The approach is multidisciplinary, opening a dialogue across scientific disciplines and between scientists and philosophers.
Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models
This monograph presents the geoscientific context arising in decorrelative gravitational exploration to determine the mass density distribution inside the Earth. First, an insight into the current state of research is given by reducing gravimetry to mathematically accessible, and thus calculable, decorrelated models. In this way, the various unresolved questions and problems of gravimetry are made available to a broad scientific audience and the exploration industry. New theoretical developments will be given, and innovative ways of modeling geologic layers and faults by mollifier regularization techniques are shown. This book is dedicated to surface as well as volume geology with potential data primarily of terrestrial origin. For deep geology, the geomathematical decorrelation methods are to be designed in such a way that depth information (e.g., in boreholes) may be canonically entered. Bridging several different geo-disciplines, this book leads in a cycle from the potential measurements made by geoengineers, to the cleansing of data by geophysicists and geoengineers, to the subsequent theory and model formation, computer-based implementation, and numerical calculation and simulations made by geomathematicians, to interpretation by geologists, and, if necessary, back. It therefore spans the spectrum from geoengineering, especially geodesy, via geophysics to geomathematics and geology, and back. Using the German Saarland area for methodological tests, important new fields of application are opened, particularly for regions with mining-related cavities or dense development in today's geo-exploration.
Einstein's theories of special relativity and general relativity form a core part of today's undergraduate (or Masters-level) physics curriculum. This is a supplementary problem book or student's manual, consisting of 150 problems in each of special and general relativity. The problems, which have been developed, tested and refined by the authors over the past two decades, are a mixture of short-form and multi-part extended problems, with hints provided where appropriate. Complete solutions are elaborated for every problem, in a different section of the book; some solutions include brief discussions on their physical or historical significance. Designed as a companion text to complement a main relativity textbook, it does not assume access to any specific textbook. This is a helpful resource for advanced students, for self-study, a source of problems for university teaching assistants, or as inspiration for instructors and examiners constructing problems for their lectures, homework or exams.
This thesis provides a comprehensive view of the physics of charmed hadrons in high-energy proton-proton and heavy-ion collisions. Given their large masses, charm quarks are produced in the early stage of a heavy-ion collision and they subsequently experience the full system evolution probing the colour-deconfined medium called quark-gluon plasma (QGP) created in such collisions. In this thesis, the mechanisms of charm-quark in-medium energy loss and hadronisation are discussed via the measurements of the production of charm mesons with (Ds+) and without (D+) strange-quark content in different colliding systems, using data collected by the ALICE experiment at the CERN LHC. The participation of the charm quark and its possible thermalisation in the QGP are studied via measurements of azimuthal anisotropies in the production of D+ mesons. Finally, the prospects for future measurements with the upgraded ALICE experimental apparatus and with more refined machine learning techniques are presented.
Clarity, readability, and rigor combine in the third edition of this widely used textbook to provide the first step into general relativity for advanced undergraduates with a minimal background in mathematics. Topics within relativity that fascinate astrophysics researchers and students alike are covered with Schutz's characteristic ease and authority, from black holes to relativistic objects, from pulsars to the study of the Universe as a whole. This third edition contains discoveries by astronomers that require general relativity for their explanation; two chapters on gravitational waves, including direct detections of gravitational waves and their observations' impact on cosmological measurements; new information on black holes and neutron stars; and greater insight into the expansion of the Universe. Over 300 exercises, many new to this edition, give students the confidence to work with general relativity and the necessary mathematics, while the informal writing style and worked examples make the subject matter easily accessible.
This book highlights the review of articles in theoretical physics by the students of Professor K. Babu Joseph, as a Festschrift for his 80th Birthday. This book is divided into four sections based on the contributions of Babu Joseph and his students. The four sections are Cosmology, High Energy Physics, Mathematical Physics and Non-linear Dynamics and its applications.
In the late 20th and beginning 21st century high-precision astronomy, positioning and metrology strongly rely on general relativity. Supported by exercises and solutions this book offers graduate students and researchers entering those fields a self-contained and exhaustive but accessible treatment of applied general relativity. The book is written in a homogenous (graduate level textbook) style allowing the reader to understand the arguments step by step. It first introduces the mathematical and theoretical foundations of gravity theory and then concentrates on its general relativistic applications: clock rates, clock sychronization, establishment of time scales, astronomical references frames, relativistic astrometry, celestial mechanics and metrology. The authors present up-to-date relativistic models for applied techniques such as Satellite LASER Ranging (SLR), Lunar LASER Ranging (LLR), Globale Navigation Satellite Systems (GNSS), Very Large Baseline Interferometry (VLBI), radar measurements, gyroscopes and pulsar timing. A list of acronyms helps the reader keep an overview and a mathematical appendix provides required functions and terms.
This book presents Special Relativity in a language accessible to students while avoiding the burdens of geometry, tensor calculus, space-time symmetries, and the introduction of four vectors. The search for clarity in the fundamental questions about Relativity, the discussion of historical developments before and after 1905, the strong connection to current research topics, many solved examples and problems, and illustrations of the material in colloquial discussions are the most significant and original assets of this book. Importantly for first-time students, Special Relativity is presented such that nothing needs to be called paradoxical or apparent; everything is explained. The content of this volume develops and builds on the book Relativity Matters (Springer, 2017). However, this presentation of Special Relativity does not require 4-vector tools. The relevant material has been extended and reformulated, with additional examples and clarifications. This introduction of Special Relativity offers conceptual insights reaching well beyond the usual method of teaching relativity. It considers relevant developments after the discovery of General Relativity (which itself is not presented), and advances the reader into contemporary research fields. This presentation of Special Relativity is connected to present day research topics in particle, nuclear, and high intensity pulsed laser physics and is complemented by the current cosmological perspective. The conceptual reach of Special Relativity today extends significantly further compared even to a few decades ago. As the book progresses, the qualitative and historical introduction turns into a textbook-style presentation with many detailed results derived in an explicit manner. The reader reaching the end of this text needs knowledge of classical mechanics, a good command of elementary algebra, basic knowledge of calculus, and introductory know-how of electromagnetism.
This thorough introduction to Einstein's special theory of relativity is suitable for anyone with a minimum of one year of undergraduate physics with calculus. The authors cover every aspect of special relativity, including the impact of special relativity in quantum theory, with an introduction to relativistic quantum mechanics and quantum field theory. They also discuss the group theory of the Lorentz group, supersymmetry, and such cutting-edge topics as general relativity, the standard model of elementary particles and its extensions, and superstring theory, giving a survey of important unsolved problems. The book is accompanied by an interactive CD-ROM illustrating classic problems in relativity involving motion.
This book presents the superfield description of various supersymmetric field theory models in three- and four-dimensional space-times. A mapping between superfield and component formulations of supersymmetric field theories is discussed. The author also describes the methodology for calculating quantum corrections in these theories employing supergraph formalism and functional methods, and illustrates these approaches with many detailed examples of how such calculations are performed for various superfield models.
This textbook introduces the special theory of relativity at a level which is accessible to undergraduate students and even high school students with a strong foundation in algebra. The presentation emphasizes clean algebraic and geometrical methods, visualized with plenty of illustrations, resulting in a textbook that is modern and serious yet accessible. Replete with many solved exercises and copious spacetime diagrams, this book will help students develop relativistic intuition when encountering the subject for the first time. The emphasis on geometric methods, combined with the pedagogically appealing k-calculus approach, makes this book ideal for a self-contained course on special relativity or as supplementary reading for modern physics courses. It will also appeal to high schoolers with a strong math background who want to get ahead.
This concise textbook introduces the reader to advanced mathematical aspects of general relativity, covering topics like Penrose diagrams, causality theory, singularity theorems, the Cauchy problem for the Einstein equations, the positive mass theorem, and the laws of black hole thermodynamics. It emerged from lecture notes originally conceived for a one-semester course in Mathematical Relativity which has been taught at the Instituto Superior Tecnico (University of Lisbon, Portugal) since 2010 to Masters and Doctorate students in Mathematics and Physics. Mostly self-contained, and mathematically rigorous, this book can be appealing to graduate students in Mathematics or Physics seeking specialization in general relativity, geometry or partial differential equations. Prerequisites include proficiency in differential geometry and the basic principles of relativity. Readers who are familiar with special relativity and have taken a course either in Riemannian geometry (for students of Mathematics) or in general relativity (for those in Physics) can benefit from this book.
This volume provides a detailed description of some of the most active areas in astrophysics from the largest scales probed by the Planck satellite to massive black holes that lie at the heart of galaxies and up to the much awaited but stunning discovery of thousands of exoplanets. It contains the following chapters: * Jean-Philippe UZAN, The Big-Bang Theory: Construction, Evolution and Status * Jean-Loup PUGET, The Planck Mission and the Cosmic Microwave Background * Reinhard GENZEL, Massive Black Holes: Evidence, Demographics and Cosmic Evolution * Arnaud CASSAN, New Worlds Ahead: The Discovery of Exoplanets Reinhard Genzel and Andrea Ghez shared the 2020 Nobel Prize in Physics "for the discovery of a supermassive compact object at the centre of our galaxy'", alongside Roger Penrose "for the discovery that black hole formation is a robust prediction of the general theory of relativity". The book corresponds to the twentieth Poincare Seminar, held on November 21, 2015, at Institut Henri Poincare in Paris. Originally written as lectures to a broad scientific audience, these four chapters are of high value and will be of general interest to astrophysicists, physicists, mathematicians and historians.
This book explains and develops the Dirac equation in the context of general relativistic quantum mechanics in a range of spacetime dimensions. It clarifies the subject by carefully pointing out the various conventions used and explaining how they are related to each other. The prerequisites are familiarity with general relativity and an exposure to the Dirac equation at the level of special relativistic quantum mechanics, but a review of this latter topic is given in the first chapter as a reference and framework for the physical interpretations that follow. Worked examples and exercises with solutions are provided. Appendices include reviews of topics used in the body of the text. This book should benefit researchers and graduate students in general relativity and in condensed matter.
In "It's About Time," N. David Mermin asserts that relativity ought to be an important part of everyone's education--after all, it is largely about time, a subject with which all are familiar. The book reveals that some of our most intuitive notions about time are shockingly wrong, and that the real nature of time discovered by Einstein can be rigorously explained without advanced mathematics. This readable exposition of the nature of time as addressed in Einstein's theory of relativity is accessible to anyone who remembers a little high school algebra and elementary plane geometry. The book evolved as Mermin taught the subject to diverse groups of undergraduates at Cornell University, none of them science majors, over three and a half decades. Mermin's approach is imaginative, yet accurate and complete. Clear, lively, and informal, the book will appeal to intellectually curious readers of all kinds, including even professional physicists, who will be intrigued by its highly original approach.
Based on Prof. Lust's Masters course at the University of Munich, this book begins with a short introduction to general relativity. It then presents black hole solutions, and discusses Penrose diagrams, black hole thermodynamics and entropy, the Unruh effect, Hawking radiation, the black hole information problem, black holes in supergravity and string theory, the black hole microstate counting in string theory, asymptotic symmetries in general relativity, and a particular quantum model for black holes. The book offers an up-to-date summary of all the pertinent questions in this highly active field of physics, and is ideal reading for graduate students and young researchers.
This thesis describes the application of state-of-the-art high-energy X-ray studies to the astronomical quest for understanding obscured active galactic nuclei (AGN). These AGN are supermassive black holes growing by accretion of matter located in the nuclei of galaxies. The material that feeds these black holes also obscures them from view, rendering them challenging to study. It is possible to study them by effectively 'X-raying' galactic nuclei to peer through these obscuring veils. Beginning with the proof-of-concept application of novel X-ray Monte Carlo codes to the Nuclear Spectroscopic Telescope ARray (NuSTAR) spectrum of a known heavily obscured AGN, the thesis establishes the relevant parameters that characterise the AGN spectrum and central black hole growth rate. Next the largest sample of known heavily obscured AGN is compiled, finding the strength of a prominent iron spectral feature to weaken with AGN power. This is puzzling, and suggests that there may be more hidden AGN than previously thought. Finally by combining an all-sky infrared selection with NuSTAR follow-up, new heavily obscured AGN are identified. Obscuration emits infrared radiation, meaning that the infrared-selected AGN catalogue should be representative of the underlying AGN population. The absence of such representative catalogues has continually plagued cosmological studies, and the resultant obscured AGN fraction will be strongly constraining for AGN models.
This contributed volume explores the renaissance of general relativity after World War II, when it transformed from a marginal theory into a cornerstone of modern physics. Chapters explore key historical processes related to the theory of general relativity, in addition to presenting a thorough treatment of the relevant science behind these episodes. A broad historiographical framework is introduced first, thus providing the broad context in which the given computational approaches and case studies occurred. Written by an international and interdisciplinary group of expert authors, these chapters will bring readers to a more complete understanding of Einstein's theory. Specific topics include: Social and citation networks The Fock-Infeld dispute Wheeler's turn to gravitation theory The position of general relativity in theories of fundamental interactions The pursuit of a quantum theory of gravity The emergence of dark matter in relation to cosmological models Institutional frameworks for gravitational wave search in Europe The Renaissance of General Relativity in Context is ideal for historians, philosophers, and sociologists of science. Students and researchers in physics will also be interested in the topics explored.
Einstein's theories of special relativity and general relativity form a core part of today's undergraduate (or Masters-level) physics curriculum. This is a supplementary problem book or student's manual, consisting of 150 problems in each of special and general relativity. The problems, which have been developed, tested and refined by the authors over the past two decades, are a mixture of short-form and multi-part extended problems, with hints provided where appropriate. Complete solutions are elaborated for every problem, in a different section of the book; some solutions include brief discussions on their physical or historical significance. Designed as a companion text to complement a main relativity textbook, it does not assume access to any specific textbook. This is a helpful resource for advanced students, for self-study, a source of problems for university teaching assistants, or as inspiration for instructors and examiners constructing problems for their lectures, homework or exams.
This book presents a multidisciplinary guide to gauge theory and gravity, with chapters by the world's leading theoretical physicists, mathematicians, historians and philosophers of science. The contributions from theoretical physics explore e.g. the consistency of the unification of gravitation and quantum theory, the underpinnings of experimental tests of gauge theory and its role in shedding light on the relationship between mathematics and physics. In turn, historians and philosophers of science assess the impact of Weyl's view on the philosophy of science. Graduate students, lecturers and researchers in the fields of history of science, theoretical physics and philosophy of science will benefit from this book by learning about the role played by Weyl's Raum-Zeit-Materie in shaping several modern research fields, and by gaining insights into the future prospects of gauge theory in both theoretical and experimental physics. Furthermore, the book facilitates interdisciplinary exchange and conceptual innovation in tackling fundamental questions about our deepest theories of physics. Chapter "Weyl's Raum-Zeit-Materie and the Philosophy of Science" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com
In this compendium of essays, some of the world's leading thinkers discuss their conceptions of space and time, as viewed through the lens of their own discipline. With an epilogue on the limits of human understanding, this volume hosts contributions from six or more diverse fields. It presumes only rudimentary background knowledge on the part of the reader. Time and again, through the prism of intellect, humans have tried to diffract reality into various distinct, yet seamless, atomic, yet holistic, independent, yet interrelated disciplines and have attempted to study it contextually. Philosophers debate the paradoxes, or engage in meditations, dialogues and reflections on the content and nature of space and time. Physicists, too, have been trying to mold space and time to fit their notions concerning micro- and macro-worlds. Mathematicians focus on the abstract aspects of space, time and measurement. While cognitive scientists ponder over the perceptual and experiential facets of our consciousness of space and time, computer scientists theoretically and practically try to optimize the space-time complexities in storing and retrieving data/information. The list is never-ending. Linguists, logicians, artists, evolutionary biologists, geographers etc., all are trying to weave a web of understanding around the same duo. However, our endeavour into a world of such endless imagination is restrained by intellectual dilemmas such as: Can humans comprehend everything? Are there any limits? Can finite thought fathom infinity? We have sought far and wide among the best minds to furnish articles that provide an overview of the above topics. We hope that, through this journey, a symphony of patterns and tapestry of intuitions will emerge, providing the reader with insights into the questions: What is Space? What is Time? Chapter [15] of this book is available open access under a CC BY 4.0 license.
This book aims to integrate, in a pedagogical and technical manner, with detailed derivations, all essential principles of fundamental theoretical physics as developed over the past 100 years. It covers: Quantum physics and Stability Problems in the Quantum World, Minkowski Spacetime Physics Particle Classifications and Underlying Symmetries, Symmetry Violations, Quantum Field Theory of Particle Interactions, Higgs Field Physics, Supersymmetry: A Theory with Mathematical Beauty Superstrings, Gravity and Supergravity, General Relativity Predictions, including Frame Dragging, Intricacies of Black Hole Physics, Perturbative and Non-perturbative Quantum Gravity Intricacies of Modern Cosmology, including Inflation and Power Spectrum If you are in the process of learning, or are lecturing on, any of the subjects above, then this is your book - irrespective of your specialty. With over-specialization and no time to master all the fields given above, students, and perhaps many physicists, may find it difficult to keep up with all the exciting developments going on, and are even less familiar with their underlying technicalities: e.g. they might have heard that the Universe is 13.8 billion years old, but have no idea on how this number is actually computed. This unique book will be of great value to graduate students, instructors and researchers interested in the intricacies and derivations of the many aspects of modern fundamental theoretical physics. And, although a graduate level book, some chapters may also be suitable for advanced undergraduates in their final year. |
You may like...
Developing Technology Mediation in…
Filomena Soares, Ana Paula Lopes, …
Hardcover
R5,374
Discovery Miles 53 740
Managing AI Wisely - From Development to…
Lauren Waardenburg, Marleen Huysman, …
Hardcover
R2,682
Discovery Miles 26 820
Process Algebra with Timing
J. C. M. Baeten, C.A. Middelburg
Hardcover
R1,574
Discovery Miles 15 740
Microsystem Technology and Microrobotics
Sergej Fatikow, Ulrich Rembold
Hardcover
R4,239
Discovery Miles 42 390
Green IT Engineering: Social, Business…
Vyacheslav Kharchenko, Yuriy Kondratenko, …
Hardcover
R4,127
Discovery Miles 41 270
Palladium-Catalyzed Modification of…
Anant R. Kapdi, Debabrata Maiti, …
Paperback
|