![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Relativity physics > General
This book provides an introduction to Quantum Chromodynamics (QCD), the theory of strong interactions. It covers in full detail both the theoretical foundations and the experimental tests of the theory. Although the experimental chapters focus on recent measurements, the subject is placed into historical perspective by also summarizing the steps which lead to the formulation of QCD. Measurements are discussed as they were performing by the LEP experiments at CERN, or at hadron-hadron and lepton-hadron colliders such as the TEVATRON at Fermilab and HERN at DESY. Emphasis is placed on high energy tests of QCD, such as measurements of the strong coupling constant, investigations of the non-abelian structure of the underlying gauge group, determinations of nucleon structure functions, and studies of the non-perturbative hadronization process. This excellent text gives a detailed overview of how QCD developed in the 20th century and where we stand with respect to a quantitative understanding after the turn of the millenium. The text is intended for graduate and postgraduate students as well as researchers, and includes numerous problems and solutions.
Pulsars are rapidly spinning neutron stars, the collapsed cores of once massive stars that ended their lives as supernova explosions. In this book, Geoff McNamara explores the history, subsequent discovery and contemporary research into pulsar astronomy. The story of pulsars is brought right up to date with the announcement in 2006 of a new breed of pulsar, Rotating Radio Transients (RRATs), which emit short bursts of radio signals separated by long pauses. These may outnumber conventional radio pulsars by a ratio of four to one. Geoff McNamara ends by pointing out that, despite the enormous success of pulsar research in the second half of the twentieth century, the real discoveries are yet to be made including, perhaps, the detection of the hypothetical pulsar black hole binary system by the proposed Square Kilometre Array - the largest single radio telescope in the world.
In this short book, renowned theoretical physicist and author Carlo Rovelli gives a straightforward introduction to Einstein's General Relativity, our current theory of gravitation. Focusing on conceptual clarity, he derives all the basic results in the simplest way, taking care to explain the physical, philosophical and mathematical ideas at the heart of "the most beautiful of all scientific theories". Some of the main applications of General Relativity are also explored, for example, black holes, gravitational waves and cosmology, and the book concludes with a brief introduction to quantum gravity. Written by an author well known for the clarity of his presentation of scientific ideas, this concise book will appeal to university students looking to improve their understanding of the principal concepts, as well as science-literate readers who are curious about the real theory of General Relativity, at a level beyond a popular science treatment.
'The book should be an interesting read for advanced students within the field and for experts working in it.'Contemporary PhysicsIn 1887, Michelson and Morley tried to observe in laboratory the 'ether drift' by measuring a small difference in the velocity of two perpendicular light beams. The result of their measurements, however, was much smaller than the classical prediction and interpreted as a 'null result'. This was crucial to stimulate the first pioneering formulations of relativity and, as such, it represents a fundamental step in the history of science. Since then, many repetitions of that original experiment have been performed with better and better sensitivity and the standard conclusion has been always the same: no genuine ether drift has ever been detected. However, in the authors' new scheme, the small irregular residuals observed in laboratory show surprising correlations with the direct observations of the Cosmic Microwave Background (CMB) with satellites in space. This opens the possibility of finally linking the CMB to a fundamental reference frame for relativity, with substantial implications for the interpretation of non-locality in the quantum theory. The importance of the issue would require new dedicated experimental tests and significant improvements in the data analysis. Otherwise, without such more stringent checks, these crucial experiments will remain forever as an enigma for physics and the history of science. The book illustrates the many facets of this research together with historical accounts on some leading scientists involved in these measurements.
The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have privileged a geometric approach, the author uses an algebraic approach which can be introduced as a tensor product of quaternion algebras and provides a unified calculus for much of physics. The book proposes a pedagogical introduction to this new calculus, based on quaternions, with applications mainly in special relativity, classical electromagnetism and general relativity. The volume is intended for students, researchers and instructors in physics, applied mathematics and engineering interested in this new quaternionic Clifford calculus.
Universally recognized as bringing about a revolutionary
transformation of the notions of space, time, and motion in
physics, Einstein's theory of gravitation, known as "general
relativity," was also a defining event for 20th century philosophy
of science. During the decisive first ten years of the theory's
existence, two main tendencies dominated its philosophical
reception. This book is an extended argument that the path actually
taken, which became logical empiricist philosophy of science,
greatly contributed to the current impasse over realism, whereas
new possibilities are opened in revisiting and reviving the spirit
of the more sophisticated tendency, a cluster of viewpoints broadly
termed transcendental idealism, and furthering its articulation. It
also emerges that Einstein, while paying lip service to the
emerging philosophy of logical empiricism, ended up siding de facto
with the latter tendency.
Based on a course taught for years at Oxford, this book offers a concise exposition of the central ideas of general relativity. The focus is on the chain of reasoning that leads to the relativistic theory from the analysis of distance and time measurements in the presence of gravity, rather than on the underlying mathematical structure. Includes links to recent developments, including theoretical work and observational evidence, to encourage further study.
Cosmology has been transformed by dramatic progress in high-precision observations and theoretical modelling. This book surveys key developments and open issues for graduate students and researchers. Using a relativistic geometric approach, it focuses on the general concepts and relations that underpin the standard model of the Universe. Part I covers foundations of relativistic cosmology whilst Part II develops the dynamical and observational relations for all models of the Universe based on general relativity. Part III focuses on the standard model of cosmology, including inflation, dark matter, dark energy, perturbation theory, the cosmic microwave background, structure formation and gravitational lensing. It also examines modified gravity and inhomogeneity as possible alternatives to dark energy. Anisotropic and inhomogeneous models are described in Part IV, and Part V reviews deeper issues, such as quantum cosmology, the start of the universe and the multiverse proposal. Colour versions of some figures are available at www.cambridge.org/9780521381154.
As we humans have expanded our horizons to see things vastly smaller, faster, larger, and farther than ever before, we have been forced to confront preconceptions born of the human experience and create wholly new ways of looking at the world around us. The theories of relativity and quantum physics were developed out of this need and have provided us with phenomenal, mind-twisting insights into the strange and exciting reality show of our universe. "Relativity and Quantum Physics For Beginners" is an entertaining and accessible introduction to the bizarre concepts that fueled the scientific revolution of the 20th century and led to amazing advances in our understanding of the universe.
First published in 1922 and based on lectures delivered in May 1921, Albert Einstein's The Meaning of Relativity offered an overview and explanation of the then new and controversial theory of relativity. The work would go on to become a monumental classic, printed in numerous editions and translations worldwide. Now, The Formative Years of Relativity introduces Einstein's masterpiece to new audiences. This beautiful volume contains Einstein's insightful text, accompanied by important historical materials and commentary looking at the origins and development of general relativity. Hanoch Gutfreund and Jurgen Renn provide fresh, original perspectives, placing Einstein's achievements into a broader context for all readers. In this book, Gutfreund and Renn tell the rich story behind the early reception, spread, and consequences of Einstein's ideas during the formative years of general relativity in the late 1910s and 1920s. They show that relativity's meaning changed radically throughout the nascent years of its development, and they describe in detail the transformation of Einstein's work from the esoteric pursuit of one individual communicating with a handful of colleagues into the preoccupation of a growing community of physicists, astronomers, mathematicians, and philosophers. This handsome edition quotes extensively from Einstein's correspondence and reproduces historical documents such as newspaper articles and letters. Inserts are featured in the main text giving concise explanations of basic concepts, and short biographical notes and photographs of some of Einstein's contemporaries are included. The first-ever English translations of two of Einstein's popular Princeton lectures are featured at the book's end.
2 Homogeneous superconducting state 210 3 Superconducting phases with broken space symmetries 213 4 Flavor asymmetric quark condensates 219 5 Concluding remarks 221 Acknowledgments 222 References 223 Neutral Dense Quark Matter 225 Mei Huang and Igor Shovkovy 1 Introduction 225 2 Local charge neutrality: homogeneous phase 226 3 Global charge neutrality: mixed phase 234 4 Conclusion 238 References 238 Possibility of color magnetic superconductivity 241 Toshitaka Tatsumi, Tomoyuki Maruyama, and Eiji Nakano 1 Introduction 241 2 What is ferromagnetism in quark matter? 243 3 Color magnetic superconductivity 248 4 Chiral symmetry and magnetism 253 5 Summary and Concluding remarks 258 Acknowledgments 260 References 260 Magnetic Fields of Compact Stars with Superconducting Quark Cores 263 David M. Sedrakian, David Blaschke, and Karen M. Shahabasyan 1 Introduction 263 2 Free Energy 265 3 Ginzburg-Landau equations 267 4 Vortex Structure 269 5 Solution of Ginzburg-Landau Equations 271 6 The Magnetic Field Components 273 7 Summary 275 Acknowledgments 275 References 275 Thermal Color-superconducting Fluctuations in Dense Quark Matter 277 D. N.
Neutron stars hold a central place in astrophysics, not only because they are made up of the most extreme states of the condensed matter, but also because they are, along with white dwarfs and black holes, one of the stable configurations that stars reach at the end of stellar evolution. Neutron stars posses the highest rotation rates and strongest magnetic fields among all stars. They radiate prolifically, in high energy electromagnetic radiation and in the radio band. This book is devoted to the selected lectures presented in the 6th NATO-ASI series entitled "The Electromagnetic Spectrum of Neutron Stars" in Marmaris, Turkey, on 7-18 June 2004. This ASI is devoted to the spectral properties of neutron stars. Spectral observations of neutron stars help us to understand the magnetospheric emission processes of isolated radio pulsars and the emission processes of accreting neutron stars. This volume includes spectral information from the neutron stars in broadest sense, namely neutrino and gravitational radiation along with the electromagnetic spectrum. We believe that this volume can serve as graduate level of text including the broad range of properties of neutron stars.
1919 hat das Preussische Ministerium fur Wissenschaft, Kunst und Volksbildung die Akte "Einsteins Relativitatstheorie" angelegt. Der Autor, selbst Wissenschaftshistoriker, hat sie 1961 gefunden und zusammen mit anderen inzwischen identifizierten "Einstein"-Akten aus deutschen Archiven als Quellmaterial fur dieses faszinierende Buch gewahlt. Eingeteilt in drei Abschnitte: "Im Kaiserreich"-"In der Weimarer Republik"-"Das dritte Reich" zeichnet das Buch das Einsteinbild nach, zeigt auf, wie der Wissenschaftler immer starker durch die Ereignisse dieser turbulenten Jahre zu einer politischen Figur wurde und tragt Neues zum besseren Verstehen fur Einsteins rigorosen Bruch mit Deutschland bei. Damit fullt der Autor eine wichtige Lucke in der Einsteinliteratur. In der Neuauflage kommt noch ein Abschnitt hinzu, in dem der Autor bisher unbekanntes Material zu den FBI- und CIC-Berichten uber Einsteins angebliche Kontakte zur KPD und Komintern vorlegt. Des weiteren wird Einsteins Mitarbeit in der Volkerbundkommission erstmals in Tiefe behandelt."
Cosmic Origins tells the story of how physicists and astronomers have struggled for more than a century to understand the beginnings of our universe, from its origins in the Big Bang to the modern day. The book will introduce the science as a narrative, by telling the story of the scientists who made each major discovery. It will also address and explain aspects of our theories that some cosmologists are still hesitant to accept, as well as gaps in our knowledge and even apparent inconsistencies in our measurements. Clearly written by a master of scientific exposition, this book will fascinate the curious general reader as well as providing essential background reading for college-level courses on physics and astronomy.
A survey of the most recent developments in general relativity and in the theory of the unification of Fundamental Interactions is presented in this book. The theoretical results, the cosmological and astrophysical aspects, the experimental and observational programs are shown in 26 general talks by renowned scientists active in this field.
This graduate-level primer presents a tutorial introduction to and overview of N = 2 supergravity theories - with 8 real supercharges and in 4, 5 and 6 dimensions. First, the construction of such theories by superconformal methods is explained in detail, and relevant special geometries are obtained and characterized. Following, the relation between the supergravity theories in the various dimensions is discussed. This leads eventually to the concept of very special geometry and quaternionic-Kahler manifolds. This concise text is a valuable resource for graduate students and young researchers wishing to enter the field quickly and efficiently.
In this XVII Course of the International School of Cosmology and Gravitation devoted to "ADVANCES IN THE INTERPLAY BETWEEN QUANTUM AND GRAVITY PHYSICS" we have considered different aspects of the influence of gravity on quantum systems. In order to achieve this aim, in many lectures, seminars and discussions we have strengthened the interplay between gravity and quantum systems starting from the situation in the early universe based on astrophysical observations, up to the earthly based experiments with atom interferometry for probing the structure of space-time. Thus we have had timely lectures on the quantum field and horizon of a black hole including reviews of the problem of black holes thermodynamics and entropy, quantum information, quantum black holes, quantum evaporation and Hawking radiation, recent advances in stockastic gravity. We have also discussed quantum fluctuations in inflationary universe, quantum effects and reheating after inflation, and superplanckian energies in Hawking radiation. In this regard the subject of spinors in purely affine space-time and Dirac matter according to Weyl in the generalized theory of gravitation were developed . The dualism between space-time and matter has been deeply analyzed in order to see why, for general relativity, this is an obstacle for quantization of the theory. Also canonical Gravity and Mach's principle, torsion and curvature as commutator for Quantum Gravity and Dirac Geometry of real space-time were analysed, together with the problem of 5-Dimensional Projective Unified Field theory and Multidimensional Gravity and Cosmology.
Evidence that Einstein's addition is regulated by the Thomas
precession has come to light, turning the notorious Thomas
precession, previously considered the ugly duckling of special
relativity theory, into the beautiful swan of gyrogroup and
gyrovector space theory, where it has been extended by abstraction
into an automorphism generator, called the "Thomas gyration." The
Thomas gyration, in turn, allows the introduction of vectors into
hyperbolic geometry, where they are called "gyrovectors," in such a
way that Einstein's velocity additions turns out to be a gyrovector
addition. Einstein's addition thus becomes a gyrocommutative,
gyroassociative gyrogroup operation in the same way that ordinary
vector addition is a commutative, associative group operation. Some
gyrogroups of gyrovectors admit scalar multiplication, giving rise
to gyrovector spaces in the same way that some groups of vectors
that admit scalar multiplication give rise to vector spaces.
Furthermore, gyrovector spaces form the setting for hyperbolic
geometry in the same way that vector spaces form the setting for
Euclidean geometry. In particular, the gyrovector space with
gyrovector addition given by Einstein's (Mobius') addition forms
the setting for the Beltrami (Poincare) ball model of hyperbolic
geometry.
This is a comprehensive textbook for advanced undergraduates and beginning graduate students in physics or astrophysics, developing both the formalism and the physical ideas of special and general relativity in a logical and coherent way. The book is in two parts. Part one focuses on the special theory and begins with the study of relativistic kinematics from three points of view: the physical (the classic gedanken experiments), the algebraic (the Lorentz transformations), and the graphic (the Minkowski diagrams). Part one concludes with chapters on relativistic dynamics and electrodynamics. Part two begins with a chapter introducing differential geometry to set the mathematical background for general relativity. The physical basis for the theory is begun in the chapter on uniform accelerations. Subsequent chapters cover rotation, the electromagnetic field, and material media. A second chapter on differential geometry provides the background for Einstein's gravitational-field equation and Schwarzschild's solution. The physical significance of this solution is examined together with the challenges to the theory that have been successfully met inside the solar system. Other applications follow in the final chapters on astronomy and cosmology: These include black holes, quasars, and gravity waves as well as the relativistic features of an expanding universe ¿ including a section on the inflationary model.
Today many important directions of research are being pursued more or less independently of each other. These are, for instance, strings and mem branes, induced gravity, embedding of spacetime into a higher dimensional space, the brane world scenario, the quantum theory in curved spaces, Fock Schwinger proper time formalism, parametrized relativistic quantum the ory, quantum gravity, wormholes and the problem of "time machines," spin and supersymmetry, geometric calculus based on Clifford algebra, various interpretations of quantum mechanics including the Everett interpretation, and the recent important approach known as "decoherence." A big problem, as I see it, is that various people thoroughly investigate their narrow field without being aware of certain very close relations to other fields of research. What we need now is not only to see the trees but also the forest. In the present book I intend to do just that: to carry out a first approximation to a synthesis of the related fundamental theories of physics. I sincerely hope that such a book will be useful to physicists. From a certain viewpoint the book could be considered as a course in the oretical physics in which the foundations of all those relevant fundamental theories and concepts are attempted to be thoroughly reviewed. Unsolved problems and paradoxes are pointed out. I show that most of those ap proaches have a common basis in the theory of unconstrained membranes. The very interesting and important concept of membrane space, the tensor calculus in and functional transformations in are discussed.
This textbook attempts to bridge the gap that exists between the two levels on which relativistic symmetry is usually presented - the level of introductory courses on mechanics and electrodynamics and the level of application in high energy physics and quantum field theory: in both cases, too many other topics are more important and hardly leave time for a deepening of the idea of relativistic symmetry. So after explaining the postulates that lead to the Lorentz transformation and after going through the main points special relativity has to make in classical mechanics and electrodynamics, the authors gradually lead the reader up to a more abstract point of view on relativistic symmetry - always illustrating it by physical examples - until finally motivating and developing Wigner's classification of the unitary irreducible representations of the inhomogeneous Lorentz group. Numerous historical and mathematical asides contribute to conceptual clarification.
The greatest challenge in fundamental physics attempts to reconcile quantum mechanics and general relativity in a theory of "quantum gravity." The project suggests a profound revision of the notions of space, time and matter. It has become a key topic of debate and collaboration between physicists and philosophers. This volume collects classic and original contributions from leading experts in both fields for a provocative discussion of the issues. It contains accessible introductions to the main and less-well-known known approaches to quantum gravity. It includes exciting topics such as the fate of spacetime in various theories, the so-called "problem of time" in canonical quantum gravity, black hole thermodynamics, and the relationship between the interpretation of quantum theory and quantum gravity. This book will be essential reading for anyone interested in the profound implications of trying to marry the two most important theories in physics.
The 13th Italian Conference on General Relativity and Gravitational Physics was held in Cala Corvino-Monopoli (Bari) from September 21to September 25, 1998. The Conference, which is held every other year in different Italian locations, has brought together, as in the earlier conferences in this series, those scientists who are interested and actively work in all aspects of general relativity, from both the mathematical and the physical points of view: from classical theories of gravitation to quantum gravity, from relativistic astrophysics and cosmology to experiments in gravitation. About 70 participants came from Departments of Astronomy and Astrophysics, Departments of Mathematics and Departments of Experimental and Theoretical Physics from all over the Country; in addition a few Italian scientists working abroad kindly accepted invitations from the Scientific Committee. The good wishes of the University and of the Politecnico di Bari were conveyed by the director of Diparti mento Interuniversitario di Matematica, Prof. Franco Altomare. These proceedings contain the contributions of the two winners of the SIGRAV prizes, the invited talks presented at the Conference and most of the contributed talks. We thank all of our colleagues, who did their best to prepare their manuscripts. The pleasant atmosphere induced by the beauty of the place was greatlyenhanced not only by the participation of so many colleagues, who had lively discussions about science well beyond Conference hours, but also by the feeling of hospitalityextended to the participants by the staff of the Cala Corvino Hotel, where the Conference was held."
Einstein's Revolution is a textbook on relativity written from a historical-methodological point of view. It can be used as an account of Einstein's physical theory even if the reader has no sympathy with the author's philosophical standpoint, or it can be read for the author's philosophical argument, without the reader having to follow all the details of the physics. The work challenges a distinction made by the Vienna Circle an still influential today: the distinction between "the context of discovery" and "the context of justification." According to the traditional view, the context of discovery calls for no rational reconstruction and belongs, in effect, to psychology, while only latter is subject to a proper logic of appraisal. Against these theses, Zahar shows that there is a logic of discovery and that it plays an important role in the appraisal of theories.
Gauge theory of elementary particle physics was first published in 1984 and has become a standard textbook in the subject. This companion volume provides graduate students with problems and solutions, enabling them to learn the calculational techniques necessary to understand the research literature. Several new topics are also included and the presentation is self-contained, making the book suitable even for those not familiar with the main book. |
![]() ![]() You may like...
Relativity - The Special and The General…
Albert Einstein
Hardcover
The Evolutionary Cosmos - Outside-In…
Richard Westberg, Cal Orey
Hardcover
R1,053
Discovery Miles 10 530
Advances in Quantum Monte Carlo
James B Anderson, Stuart M. Rothstein
Hardcover
R2,781
Discovery Miles 27 810
Intrinsic Time Geometrodynamics: At One…
Chopin Soo, Hoi-lai Yu
Hardcover
R2,620
Discovery Miles 26 200
|