Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Relativity physics > General
Dieses Buch ist bis heute eine der popularsten Darstellungen der Relativitatstheorie geblieben. In der vorliegenden Version haben J. Ehlers und M. Poessel vom Max-Planck-Institut fur Gravitationsphysik (Albert-Einstein-Institut) in Golm/Potsdam den Bornschen Text kommentiert und einen den anschaulichen, aber prazisen Stil Borns wahrendes, umfangreiches Erganzungskapitel hinzugefugt, das die sturmische Entwicklung der Relativiatatstheorie bis hin zu unseren Tagen nachzeichnet. Eingegangen wird auf Gravitationswellen und Schwarze Loecher, auf neuere Entwicklungen der Kosmologie, auf Ansatze zu einer Theorie der Quantengravitation und auf die zahlreichen raffinierten Experimente, welche die Gultigkeit der Einsteinschen Theorie mit immer groesserer Genauigkeit bestatigt haben. Damit bleibt dieses Buch nach wie vor einer der unmittelbarsten Zugange zur Relativitatstheorie fur alle die sich fur eine uber das rein popularwissenschaftliche hinausgehende Einfuhrung interessieren.
Einstein's energy-momentum relation is applicable to particles of all speeds, including the particle at rest and the massless particle moving with the speed of light. If one formula or formalism is applicable to all speeds, we say it is 'Lorentz-covariant.' As for the internal space-time symmetries, there does not appear to be a clear way to approach this problem. For a particle at rest, there are three spin degrees of freedom. For a massless particle, there are helicity and gauge degrees of freedom. The aim of this book is to present one Lorentz-covariant picture of these two different space-time symmetries. Using the same mathematical tool, it is possible to give a Lorentz-covariant picture of Gell-Mann's quark model for the proton at rest and Feynman's parton model for the fast-moving proton. The mathematical formalism for these aspects of the Lorentz covariance is based on two-by-two matrices and harmonic oscillators which serve as two basic scientific languages for many different branches of physics. It is pointed out that the formalism presented in this book is applicable to various aspects of optical sciences of current interest.
On their 100th anniversary, the story of the extraordinary scientific expeditions that ushered in the era of relativity In 1919, British scientists led extraordinary expeditions to Brazil and Africa to test Albert Einstein's revolutionary new theory of general relativity in what became the century's most celebrated scientific experiment. The result ushered in a new era and made Einstein a global celebrity by confirming his dramatic prediction that the path of light rays would be bent by gravity. Today, Einstein's theory is scientific fact. Yet the effort to "weigh light" by measuring the gravitational deflection of starlight during the May 29, 1919, solar eclipse has become clouded by myth and skepticism. Could Arthur Eddington and Frank Dyson have gotten the results they claimed? Did the pacifist Eddington falsify evidence to foster peace after a horrific war by validating the theory of a German antiwar campaigner? In No Shadow of a Doubt, Daniel Kennefick provides definitive answers by offering the most comprehensive and authoritative account of how expedition scientists overcame war, bad weather, and equipment problems to make the experiment a triumphant success. The reader follows Eddington on his voyage to Africa through his letters home, and delves with Dyson into how the complex experiment was accomplished, through his notes. Other characters include Howard Grubb, the brilliant Irishman who made the instruments; William Campbell, the American astronomer who confirmed the result; and Erwin Findlay-Freundlich, the German whose attempts to perform the test in Crimea were foiled by clouds and his arrest. By chronicling the expeditions and their enormous impact in greater detail than ever before, No Shadow of a Doubt reveals a story that is even richer and more exciting than previously known.
Science, philosophy of science, and metaphysics have long been concerned with the question of how order, stability, and novelty are possible and how they happen. How can order come out of disorder? This book introduces a new account, contextual emergence, seeking to answer these questions. The authors offer an alternative picture of the world with an alternative account of how novelty and order arise, and how both are possible. Contextual emergence is grounded primarily in the sciences as opposed to logic or metaphysics. It is both an explanatory and ontological account of emergence that gets beyond the impasse between "weak" and "strong" emergence in the emergence debates. It challenges the "foundationalist" or hierarchical picture of reality and emphasizes the ontological and explanatory fundamentality of multiscale stability conditions and their contextual constraints, often operating globally over interconnected, interdependent, and interacting entities and their multiscale relations. It also focuses on the conditions that make the existence, stability, and persistence of emergent systems and their states and observables possible. These conditions and constraints are irreducibly multiscale relations, so it is not surprising that scientific explanation is often multiscale. Such multiscale conditions act as gatekeepers for systems to access modal possibilities (e.g., reducing or enhancing a system's degrees of freedom). Using examples from across the sciences, ranging from physics to biology to neuroscience and beyond, this book demonstrates that there is an empirically well-grounded, viable alternative to ontological reductionism coupled with explanatory anti-reductionism (weak emergence) and ontological disunity coupled with the impossibility of robust scientific explanation (strong emergence). Central metaphysics of science concerns are also addressed. Emergence in Context: A Treatise in Twenty-First Century Natural Philosophy is written primarily for philosophers of science, but also professional scientists from multiple disciplines who are interested in emergence and particularly in the metaphysics of science.
Organized by Tata Institute of Fundamental Research, Bombay
cB) 114 7. 8 Constant electric and magnetic fields at right angles (8,
This book is the second edition of an excellent undergraduate-level overview of classical and modern physics, intended for students of physics and related subjects, and also perfectly suited for the education of physics teachers. The twelve-chapter book begins with Newton's laws of motion and subsequently covers topics such as thermodynamics and statistical physics, electrodynamics, special and general relativity, quantum mechanics and cosmology , the standard model and quantum chromodynamics. The writing is lucid, and the theoretical discussions are easy to follow for anyone comfortable with standard mathematics. An important addition in this second edition is a set of exercises and problems, distributed throughout the book. Some of the problems aim to complement the text, others to provide readers with additional useful tools for tackling new or more advanced topics. Furthermore, new topics have been added in several chapters; for example, the discovery of extra-solar planets from the wobble of their mother stars, a discussion of the Landauer principle relating information erasure to an increase of entropy, quantum logic, first order quantum corrections to the ideal gas equation of state due to the Fermi-Dirac and Bose-Einstein statistics. Both gravitational lensing and the time-correction in geo-positioning satellites are explained as theoretical applications of special and general relativity. The discovery of gravitational waves, one of the most important achievements of physical sciences, is presented as well. Professional scientists, teachers, and researchers will also want to have this book on their bookshelves, as it provides an excellent refresher on a wide range of topics and serves as an ideal starting point for expanding one's knowledge of new or unfamiliar fields. Readers of this book will not only learn much about physics, they will also learn to love it.
Since the first French edition of the book emphasized rather the solid facts of Cosmology than the detailed discussions of controversial results, relatively few revisions were necessary for the English edition. They were made early in 1979 and affected about 5% of the text. The main revisions referred to the distance scale, the dlstribution of galaxies, the X-ray observations of clusters, the cosmic time evolution of quasars and radiogalaxies and the 3 K radiation. A new short bibliography presents the recent articles and the latest proceedings of Symposia; from these the reader can easily trace a more complete list of refer ences. I am happy to thank Professor Beiglbock for suggestions he made to improve Part lIon Spaces of Constant Curvature, and Drs. S. and J. Mitton for translating the manuscript into English. I also thank with pleasure Marie-Ange Sevin for correcting the final version. J. Heidmann March 1980, Meudon, France Preface The aim of this book is to present the fundamentals of cosmology. Its subject is the study of the universe on a grand scale: - on a grand distance scale, since from the start, we shall be escaping the con fines of our own Galaxy to explore space as far as the limits of the observable universe, some ten thousand million light years away; - and on a grand time scale, as we shall look back into the past to the very first moments of the initial expansion, about twelve thousand million years ago."
Aimed at students and researchers entering the field, this pedagogical introduction to numerical relativity will also interest scientists seeking a broad survey of its challenges and achievements. Assuming only a basic knowledge of classical general relativity, the book develops the mathematical formalism from first principles, and then highlights some of the pioneering simulations involving black holes and neutron stars, gravitational collapse and gravitational waves. The book contains 300 exercises to help readers master new material as it is presented. Numerous illustrations, many in color, assist in visualizing new geometric concepts and highlighting the results of computer simulations. Summary boxes encapsulate some of the most important results for quick reference. Applications covered include calculations of coalescing binary black holes and binary neutron stars, rotating stars, colliding star clusters, gravitational and magnetorotational collapse, critical phenomena, the generation of gravitational waves, and other topics of current physical and astrophysical significance.
The Physical World offers a grand vision of the essential unity of physics that will enable the reader to see the world through the eyes of a physicist and understand their thinking. The text follows Einstein's dictum that 'explanations should be made as simple as possible, but no simpler', to give an honest account of how modern physicists understand their subject, including the shortcomings of current theory. The result is an up-to-date and engaging portrait of physics that contains concise derivations of the important results in a style where every step in a derivation is clearly explained, so that anyone with the appropriate mathematical skills will find the text easy to digest. It is over half a century since The Feynman Lectures in Physics were published. A new authoritative account of fundamental physics covering all branches of the subject is now well overdue. The Physical World has been written to satisfy this need. The book concentrates on the conceptual principles of each branch of physics and shows how they fit together to form a coherent whole. Emphasis is placed on the use of variational principles in physics, and in particular the principle of least action, an approach that lies at the heart of modern theoretical physics, but has been neglected in most introductory accounts of the subject.
This book presents more than 200 problems, with detailed guided solutions, spanning key areas of particle physics and astrophysics. The selected examples enable students to gain a deeper understanding of these fields and also offer valuable support in the preparation for written examinations. The book is an ideal companion to Introduction to Particle and Astroparticle Physics: Multimessenger Astronomy and its Particle Physics Foundations, written by Alessandro De Angelis and Mario Pimenta and published in its second edition in Springer's Undergraduate Lecture Notes in Physics series in 2018. It can, however, also be used independently. The present book is organized into 11 chapters that match exactly those in the companion textbook, and each of the exercises is given a title to facilitate identification of the subject within that book. Some new exercises have been added because they are considered helpful on the basis of the experience gained by teachers while using the textbook. Beyond students on relevant courses, exercises and solutions in particle and astroparticle physics are of value for physics teachers and to all who seek aid to self-training.
Time magazine's "Man of the Century", Albert Einstein is the founder of modern physics and his theory of relativity is the most important scientific idea of the modern era. In this short book, Einstein explains, using the minimum of mathematical terms, the basic ideas and principles of the theory that has shaped the world we live in today. Unsurpassed by any subsequent books on relativity, this remains the most popular and useful exposition of Einstein's immense contribution to human knowledge. With a new foreword by Derek Raine.
This book is an elaboration of lecture notes for the graduate course on General Rela tivity given by the author at Boston University in the spring semester of 1972. It is an introduction to the subject only, as the time available for the course was limited. The author of an introduction to General Relativity is faced from the beginning with the difficult task of choosing which material to include. A general criterion as sisting in this choice is provided by the didactic character of the book: Those chapters have to be included in priority, which will be most useful to the reader in enabling him to understand the methods used in General Relativity, the results obtained so far and possibly the problems still to be solved. This criterion is not sufficient to ensure a unique choice. General Relativity has developed to such a degree, that it is impossible to include in an introductory textbook of a reasonable length even a very condensed treatment of all important problems which have been discussed until now and the author is obliged to decide, in a more or less subjective manner, which of the more recent developments to omit. The following lines indicate by means of some examples the kind of choice made in this book."
Following on from a previous volume on Special Relativity, Andrew Steane's second volume on General Relativity and Cosmology is aimed at advanced undergraduate or graduate students undertaking a physics course, and encourages them to expand their knowledge of Special Relativity. Beginning with a survey of the main ideas, the textbook goes on to give the methodological foundations to enable a working understanding of astronomy and gravitational waves (linearized approximation, differential geometry, covariant differentiation, physics in curved spacetime). It covers the generic properties of horizons and black holes, including Hawking radiation, introduces the key concepts in cosmology and gives a grounding in classical field theory, including spinors and the Dirac equation, and a Lagrangian approach to General Relativity. The textbook is designed for self-study and is aimed throughout at clarity, physical insight, and simplicity, presenting explanations and derivations in full, and providing many explicit examples. |
You may like...
The Evolutionary Cosmos - Outside-In…
Richard Westberg, Cal Orey
Hardcover
R1,008
Discovery Miles 10 080
Four Lectures on Relativity and Space
Charles Proteus Steinmetz
Hardcover
R760
Discovery Miles 7 600
Relativity Now - A Graphic Guide to…
Christopher Olaf Johnson, Amy Louise Johnson
Hardcover
R610
Discovery Miles 6 100
Relativity - The Special and The General…
Albert Einstein
Hardcover
Advances in Quantum Monte Carlo
Shigenori Tanaka, Stuart M. Rothstein, …
Hardcover
R5,411
Discovery Miles 54 110
|