![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Relativity physics > General
List of Participants **. **. *. . . . *. . **. . . **. **. *. *. . . **. *. *. . . **. * xi I. MOSS / The Quantum Origin of the Universe ****. *. *. ***. ***. *** M. S. TUru~ER / Cosmology and Particle Physics *. . ***. **. *. . ***. ** 19 G. GELMINI / Supersynunetry and the Early Universe ***. *. **. . *. *. . 115 J. D. BARROW / Relativistic Cosmology. . . . . . . . . . . . . . . . . . . . . . . . . . . 125 P. J. E. PEEBLES / Yet Another Scenario for Galaxy Formation . **. 203 ?:1. B. '-lISE / Non-Gaussian Fluctuations. . . . . . . . . . . . . . . . . . . . . . . . . . 215 S. D. H. mUTE / N-body Hethods and the Formation of Large-Scale Structure * . *. . . . * . * * . * * * . . . * . . . . * * . . . * . * . . 239 * . . . * * . . . . * T. PI~~ / Numerical Relativity and Cosmology. . . . . . . . . . . . . . . . . . . 261 J. R. BOND / Distortions and Anisotropies of the Cosmic Background Radiation *. *. . . **. **. ***. ****. . **. . *****. ** 283 J. V. HALL / The Early Universe - An Observer's View. . . . . . . . . . . . 335 G. GELHINI / Can the Solar Neutrino Problem be the First Detected Signature of Dark Hatter from the Halo of Our Galaxy? 351 A. K. DRUKIER / Detecting Cold Dark !1atter Candidates *. *. *. . . *. . 361 S. TOULMIN / The Early Universe: Historical and Philosophical Perspectives . *. *. . . . . . . *. . . . ***. *. *. *. *. . . . ****. . *. *. * 393 INDEX . . *. . . *. . . **. . . ****. . . *****. . . *. *. *. . *. . . . *. . *. *. . . **. ***.
The articles collected in this volume cover topics ranging from Planck-scale physics to galaxy clustering. They deal with various new ideas from cosmology, astrophysics and particle physics that might lead to a better understanding of our physical universe. Among the topics covered are inflationary models, nucleosynthesis, dark matter, large-scale clustering, cosmic microwave background radiations and more. The book addresses researchers but it also gives a good overview of the subject for graduate students in astrophysics and particle physics.
Published in honour of Marc Feix this book tries to give a thorough overview of mathematical methods, analytical and numerical techniques and simulations applied to a variety of problems from physics and engineering. The book addresses graduate students, researchers and especially engineers. The main emphasis is to apply the generality of methods to form a coherent and stimulating approach to practical investigations.
The five lectures presented in this volume address very timely mathematical problems in relativity and cosmology. "Part I" is devoted to the initial value and evolution problems of the Einstein equations. Especially it deals with the Einstein-Yang-Mills-Boltzmann system, fluid models with finite or infinite conductivity, global evolution of a new (two-phase) model for gravitational collapse and the structure of maximal, asymptotically flat, vacuum solutions of the constraint equations which have the additional property of containing trapped surfaces. "Part II" focuses on geometrical-topological problems in relativity and cosmology: on the role of cosmic censorship for the global structure of the Einstein-Maxwell equations and on the mathematical structure of quantum conformal superspace.
The observational evidence for the existence of black holes has grown significantly over recent decades. Stellar-mass black holes are detected as X-ray sources in binary systems, while supermassive black holes, with masses more than a million times the mass of the Sun, lurk in the nuclei of galaxies. These proceedings provide a useful and up-to-date overview of the observations of black holes in binaries, in the center of the Milky Way, and in the nuclei of galaxies, presented by leading expert astronomers. Special attention is given to the formation (including the recent evidence from gamma-ray bursts), physical properties, and demographics of black holes.
Indispensable for the building of cosmological models are precise observational data. To provide such data is the main purpose of this book. First, an analysis of recent cosmological observations using artificial satellites and large ground-based telescopes is given. Among these are the observation of the spatial distribution of galaxies and clusters, the detection of peculiar velocity fields in large regions, and the measurement of anisotropies in the microwave background radiation. Second, the authors present theoretical models which best fit the given observational data. The book addresses graduate students and astronomers and astrophysicists.
Meant as a review for students of astrophysics and particle physics, this book contains a selection of survey articles and seminar reports on "high energy cosmology." Included are contributions on topics ranging from classical cosmology, large scale structure, and primordial nucleosynthesis to quantum cosmology, covering both the theoretical aspects and the most important observations.
This book addresses graduate students in the first place and is meant as a modern compendium to the existing texts on black hole astrophysics. The authors present in pedagogically written articles our present knowledge on black holes covering mathematical models including numerical aspects and physics and astronomical observations as well. In addition, in their write-up of a panel discussion the participants of the school address the existence of black holes consenting that it has by now been verified with certainty.
This collection of articles gives a nice overview of the fast growing field of diffusion and transport. The area of non-Browman statistical mechanics has many extensions into other fields like biology, ecology, geophysics etc. These tutorial lectures address e.g. Levy flights and walks, diffusion on metal surfaces or in superconductors, classical diffusion, biased and anomalous diffusion, chemical reaction diffusion, aging in glassy systems, diffusion in soft matter and in nonsymmetric potentials, and also new problems like diffusive processes in econophysics and in biology."
1. The Workshop and this Tome In the excellent bucolic setting of SchloB Ringberg in Upper Bavaria, over 50 scientists assembled during the week of 23-28 September 1996 to discuss recent results, both theoretical and observational in nature, on the large scale structure of the Universe. Such a topic is perhaps nowadays far too encompassing, and is essentially all of what we used to call "observational cosmology. " The original philosophy of the organization of this meeting was deliber ated aimed at the younger community and their contributions. As a conse quence, the content of the presentations was refreshingly new, as it should be. In spite of the deficiences caused by the lack of certain key researchers in this field, for one reason or another, the final result was rewarding to all. Although the conference was held in Fall 1996, the contributions contained herein were submitted as late as Spring 1998, thus the content maintains some degree of trendiness. Originally the current volume was to be a "proceedings. " This refers to the usual archival tome that fills one's shelf and is rarely consulted, except to see the canonical group photo, which by the way, we also have. Nevertheless, I wanted something more than that. Although the field is rapidly changing, with so-called facts in a state ofconstant volubility, now is a good time for reflection prior to the commencement ofthe Sloan Survey, presumably the definitive large-scale program of low- to moderate-redshift galaxies in our lifetime.
This book gives a comprehensive overview of the current observational and theoretical status in the field of the local and general interstellar medium. It contains contributions presented at the IAU Colloquium No. 166. Review articles and highlight talks will serve both as an introduction to the field for the undergraduate or the non-specialist and also give a summary of the most recent developments for the expert and researcher. These articles are supplemented by a representative number of original research papers. All contributions are fully refereed and have been edited with extensive care to provide a high-standard reference book. The scientific content spans a wide range from solar system measurements of dust grains to X-ray emission from distant galaxies.
This is an exhaustive review of our theoretical and observational knowledge of gravitational lensing 10 years after the discovery of the first lensed quasar, Q0957+561. Gravitational optics, optical, infrared, and radio observations of quasar-lens candidates, microlensing, arcs in clusters of galaxies, and radio rings are presented. In particular, the continuing survey of quasar-lens candidates, the new measurement of the time delay in 0957+561, the suspended microlensing effect through the galaxy 2237+030, as well as the discovery of new arcs and the measurement of new redshifts for two of them are presented. Numerous papers on the modelling of arcs and rings show how it should be possible to probe dark matter with these unexpected gravitational telescopes. Finally, tables summarize all the lens candidates we know today.
This monograph presents in detail the reduction method for studying the unification of fundamental actions. The mathematical (differential geometrical) methods make extensive use of Lie Groups and the concept of homogeneous spaces. The main topic of the book is the dimensional reduction of pure Yang-Mills theories. A rather complete analysis of the structure of the scalar field potential is given and a general procedure for solving the equations of spontaneous compactification within Einstein-Yang-Mills systems is presented. The authors also discuss gravity and theories with fermions included and they review attempts to construct realistic models. The book presents the basic ideas and the calculations in detail and should be of interest to researchers and graduate students in mathematical physics.
This careful selection of papers gives the reader an overview of the main research topics investigated at the conference and recent progress in understanding the physical phenomena involved. These lectures should therefore be a prime source of information for the expert as well as for graduate students. They cover critical point phenomena and adsorption, solidification, crystallization, static fluids and thermophysical properties, fluid dynamics and combustion. The importance of gravity as an experimental parameter and a variable in a large diversity of physical phenomena and processes has been recognized for some 25 years. The growth of this field of physics can be gleamed from the great number of satellites, sounding rockets, terrestrial trop towers, etc., that exist.
The Symposium .Symmetries in Science VI: From the Rotation Group to Quantum Algebras. was held at the Cloister Mehrerau, Bregenz, Austria, during the period August 2-7, 1992. The Symposium was held in honor of Professor Lawrence C. Biedenharn on the occasion of his 70th birthday. During the academic year 1966/67 I worked as research associate with Larry at Duke University and we have ever since maintained close contact. It was thus natural for me to take the initiative and to organize this Symposium in honor of Larry as a great scientist and friend. The response which the Symposium received showed the favorable reaction by the scientific community to the opportunity provided by the Symposium to honor our colleague, teacher and friend. Equally, the scientific contributions contained in this volume illustrate the high esteem in which he is held. I wish to thank all the scientists who participated in the Symposium and who contributed to this volume. It is due to their commitment that the Symposium was successful. Finally I need to thank those who provided financial and logistical assistance to the Symposium: Dr. John H. Guyon, President of Southern Illinois University at Carbondale, Dr. Russell R. Dutcher, Dean, College of Science at SIUC, Dr. Maurice A. Wright, Chairman, Department of Physics, SIUC, Dr. Victoria J. Molfese, Office of Research Developement and Administration, SIUC, as well as Dr. Martin Purtscher, Landeshauptmann, Land Vorarlberg Dr. Guntram Lins, Landesrat, Land Vorarlberg."
This volume contains invited papers and contributions delivered at the International Conference on Hamiltonian Mechanics: Integrability and Chaotic Behaviour, held in Tornn, Poland during the summer of 1993. The conference was supported by the NATO Scientific and Environmental Affairs Division as an Advanced Research Workshop. In fact, it was the first scientific conference in all Eastern Europe supported by NATO. The meeting was expected to establish contacts between East and West experts as well as to study the current state of the art in the area of Hamiltonian Mechanics and its applications. I am sure that the informal atmosphere of the city of Torun, the birthplace of Nicolaus Copernicus, stimulated many valuable scientific exchanges. The first idea for this cnference was carried out by Prof Andrzej J. Maciejewski and myself, more than two years ago, during his visit in Greece. It was planned for about forty well-known scientists from East and West. At that time participation of a scientist from Eastern Europe in an Organising Committee of a NATO Conference was not allowed. But always there is the first time. Our plans for such a "small" conference, as a first attempt in the new European situation -the Europe without borders -quickly passed away. The names of our invited speakers, authorities in their field, were a magnet for many colleagues from all over the world.
The 1996 Carg se Summer Institute on Frontiers in Particle Physics was organized by the Universite Pierre et Marie Curie, Paris (M. Levy), the Ecole Nonnale SupCrieure, Paris (J. lliopoulos), the Katholieke Universiteit Leuven (R. Gastmans), and the Universite Catholique de Louvain (J.-M. Gerard), which, since 1975, have joined their efforts and worked in common. It was the twelfth Sunnner Institute on High Energy Physics organized jointly at Carg se by three of these universities. The Standard Model for fundamental interactions is constructed on two essential ingredients: the gauge symmetry and the mass generation mechanism. Now that the gauge theory aspect has been finnly established, the new challenge for the young researchers in elementary particle physics is the understanding of the origin of the masses. The standard Higgs mechanism is believed to be responsible for generating the masses of ALL fundamental particles. Professor D. Treille discussed the prospects for Higgs boson search and described the experimental determinations of the gauge boson masses. The influence of the top quark mass on electroweak processes has been emphasized by Professor J.L. Rosner, while Professor M. Neubert introduced the heavy-quark effective theory which allows you to get rid of heavy-quark masses. The theoretical determinations of the light quark masses have been critically analyzed by Professor H. Leutwyler. Professor A. Pich presented the various experimental tests on lepton universality and Professor R.L. MBssbauer reviewed our present knowledge on the neutrino masses."
The NATO Advanced Study Institute on The Nuclear Equatioo of State was held at Peiiiscola Spain from May 22- June 3, 1989. The school was devoted to the advances, theoretical and experimental, made during the past fifteen years in the physics of nuclear matter under extreme conditions, such as high compression and high temperature. Moie than 300 people had applied for participatio- this demonstrates the tremendous interest in the various subjects presented at the school. Indeed, the topic of this school, namely the Nuclear Equatioo of State, * plays the central role in high energy heavy ion collisions; * contains the intriguing possibilities of various phase transitions (gas - vapor, meson condensation, quark - gluon plasma); * plays an important role in the static and dynamical behavior of stars, especially in supernova explosions and in neutron star stability. The investigation on the nuclear equation of state can only be accomplished in the laboratory by compressing and heating up nuclear matter and the only mechanism known to date to achieve this goal is through shock compression and -heating in violent high energy heavy ion collisions. This key mechanism has been proposed and highly disputed in of high energy heavy ion physics, the early 70's. It plays a central role in the whole field and particularly in our discussions during the two weeks at Peiiiscola.
Multiply charged ions have always been in the focus of atomic physics, astrophysics, plasma physics, and theoretical physics. Within the last few years, strong progress has been achieved in the development of ion sources, ion storage rings, ion traps, and methods to cool ions. As a consequence, nowadays, experiments with ensembles of multiply charged ions of brilliant quality are performed in many laboratories. The broad spectrum of the experiments demonstrates that these ions are an extremely versatile tool for investigations in pure and applied physics. It was the aim of this ASI to bring together scientists working in different fields of research with multiply charged ions in order to get an overview of the state of the art, to sound out possibilities for fruitful cooperations, and to discuss perspectives for the future. Accordingly, the programme of the ASI reached from established areas like QED calculations, weak interactions, x-ray astronomy, x-ray lasers, multi photon excitation, heavy-ion induced fusion, and ion-surface interactions up to the very recently opened areas like bound-beta decay, laser and x-ray spectroscopy, and spectrometry of ions in rings and traps, and the interaction of highly charged ions with biological cells. Impressive progress in nearly all of the fields could be reported during the meeting which is documented by the contributions to this volume. The theoretical understand ing of QED and correlation effects in few-electron heavy ions is rapidly developing."
This book offers a presentation of the special theory of relativity that is mathematically rigorous and yet spells out in considerable detail the physical significance of the mathematics. It treats, in addition to the usual menu of topics one is accustomed to finding in introductions to special relativity, a wide variety of results of more contemporary origin. These include Zeeman s characterization of the causal automorphisms of Minkowski spacetime, the Penrose theorem on the apparent shape of a relativistically moving sphere, a detailed introduction to the theory of spinors, a Petrov-type classification of electromagnetic fields in both tensor and spinor form, a topology for Minkowski spacetime whose homeomorphism group is essentially the Lorentz group, and a careful discussion of Dirac s famous Scissors Problem and its relation to the notion of a two-valued representation of the Lorentz group. This second edition includes a new chapter on the de Sitter universe which is intended to serve two purposes. The first is to provide a gentle prologue to the steps one must take to move beyond special relativity and adapt to the presence of gravitational fields that cannot be considered negligible. The second is to understand some of the basic features of a model of the empty universe that differs markedly from Minkowski spacetime, but may be recommended by recent astronomical observations suggesting that the expansion of our own universe is accelerating rather than slowing down. The treatment presumes only a knowledge of linear algebra in the first three chapters, a bit of real analysis in the fourth and, in two appendices, some elementary point-set topology. The first edition of the book received the 1993 CHOICE award for Outstanding Academic Title. Reviews of first edition: a valuable contribution to the pedagogical literature which will be enjoyed by all who delight in precise mathematics and physics. (American Mathematical Society, 1993) Where many physics texts explain physical phenomena by means of mathematical models, here a rigorous and detailed mathematical development is accompanied by precise physical interpretations. (CHOICE, 1993) his talent in choosing the most significant results and ordering them within the book can t be denied. The reading of the book is, really, a pleasure. (Dutch Mathematical Society, 1993) "
The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green's Functions and Laplace's Equation and a discussion of Faraday's Experiment further deepen the understanding. The chapter on Einstein's relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dispersive medium complete the picture. High quality diagrams and detailed end-of-chapter questions enhance the learning experience."
This book contains the proceedings of the 1989 Crafoord Symposium organized by the Royal Swedish Academy of Sciences. The scientific field for the Crafoord Prize of 1989 was decided in 1988 by the Academy to be Magnetospheric Physics. On September 27,1989 the Academy awarded the 1989 Crafoord Prize to Professor J. A. Van Allen, Iowa City, USA "for his pioneer work in space research, in particular for the discovery of the high energy charged particles that are trapped in the Earth's magnetic field and form the radiation belts -often called the Van Allen belts - around the Earth". The subject for the Crafoord Symposium, which was held on September 28-29 at the Royal Swedish Academy of Sciences in Stockholm, was Magnetospheric Physics, Achievements and Prospects. Some seventy of the world's leading scientists in magnetospheric physics (see list of participants) were invited to the Symposium. The program contained only invited papers. After the ?resentation of the Crafoord Prize Laureate, Prof. J . A. Van Allen, and his specially invited lecture: "Active Experiments in Magnetospheric Physics" follows in these proceedings two papers on the achievements of magnetospheric research hitherto. The main part of the proceedings (8 papers) deal with the main theme of the Symposium: How we shall carry on magnetospheric research in the future. The Symposium was organized by five members of the Academy representing the field of space physics: Lars Block (Stockholm), Rolf Bostrom (Uppsala), Kerstin Fredga (Stockholm), Carl-Gunne Fiilthammar (Stockholm) and Bengt Hultqvist (Kiruna, Chairman).
Written by foremost experts, this short book gives a clear description of the physics of quantum black holes. The reader will learn about quantum black holes in four and higher dimensions, primordial black holes, the production of black holes in high energy particle collisions, Hawking radiation, black holes in models of low scale quantum gravity and quantum gravitational aspects of black holes.
Our current perspective has arisen over millennia, through falling apples, elevator thought experiments and stars spiralling into black holes; Free fall and self-force in general relativity. In fact, we do not have in mind to make a 1:1 reflection of the school. The ordering has been rearranged to tie articles together more coherently. We also propose to ask authors to focus their contributions according to the title we have suggested and to give a more complete description of current and future directions. We expect this will add to the volume s value for all anticipated readers. This volume has the unique feature of presenting a multifaceted approach to mass, which is intended mainly for graduate students and young doctoral researchers in the field of gravitation, who might be hoping to find a concise and introductory presentation of advanced topics outside their research field. It is true that research from the infinitesimal scale of particle physics to the cosmic scale of the universe is concerned with the mass. While there have been spectacular advances in physics during the past century, mass still remains as a mysterious entity at the forefront of current research. Particle accelerators in the quest for the Higgs boson, laser interferometers sensitive enough to respond to gravitational waves, equivalence principle tests and detectors for dark matter are among the most ambitious and expensive experiments that fundamental physics has ever envisaged, and strongly attest to this fact. Both the self-force and radiation reaction are, in fact, lively topics of research. Related to the nature of motion, they have been hotly debated within general relativity from the inception of the theory. Recent developments have shown that radiation reaction is unavoidable in determining the gravitational waveforms emitted from a source such as the capture of a solar mass star by super-massive black hole (EMRI). The main theme of this volume is mass and its motion within general relativity (and other theories of gravity), particularly for compact bodies, to which many articles directly refer. Within this framework, there are chapters on post-Newtonian and related methods (Blanchet, Gourgoulhon and Jaramillo, Nagar, Schafer), as well as on the self-force approach to the analysis of motion (Barack, Detweiler, Gal tsov, Poisson, Wald, Whiting), summarised along with an historic development of the field (Spallicci) and a snapshot on the state of the art (Burko). Note that self-acceleration depends directly on the mass of the body experiencing it. Mass itself is essential for this effect on motion. Auxiliary chapters set the context for these theoretical contributions within the wider context of experimental physics. The space mission LISA (Jennrich) has been designed to detect the gravitational waves from EMRI captures, while other LISA sources may have electromagnetic counterparts (van Putten). Motion in modern gravitation must confront alternative theories (Esposito-Farese) and it must to be comprehensible within a quantum context (Noui), and demands an account of the relation between vacuum fluctuations and inertia (Jaekel and Reynaud). A volume centred on the fundamental role of mass in physics should face issues related to the basic laws of mechanics proposed by Newton (Lammerzahl) and precision measurements (Davis). The role of the Higgs boson within physics is to give a mass to elementary particles (Djouadi), by interacting with all particles required to have a mass and thereby inducing inertia. Moreover, most mass in the universe is dark, and only indirectly detected. A proposed alternative to dark matter theories is due to a modified theory of gravity (Esposito-Farese) such as MOND (MOdified Newtonian Dynamics). Even if general relativity does not explain gravity, there still remains the fundamental problem of reconciling any theory of gravity with the physics of quantum fields (Noui), itself so well verified experimentally. " |
![]() ![]() You may like...
Amazon Web Services in Action
Michael Wittig, Andreas Wittig
Paperback
R1,133
Discovery Miles 11 330
An Introduction to XML and Web…
Anders Moller, Michael Schwartzbach
Paperback
R2,721
Discovery Miles 27 210
Interactive Web-based Virtual Reality…
Chi Chung Ko, Chang Dong Cheng
Hardcover
R4,567
Discovery Miles 45 670
Visualizing the Semantic Web - XML-based…
Vladimir Geroimenko, Chaomei Chen
Hardcover
R2,905
Discovery Miles 29 050
Securing the Internet of Things…
Information Reso Management Association
Hardcover
R11,237
Discovery Miles 112 370
Handbook of Research on Web Log Analysis
Bernard J Jansen, Amanda Spink, …
Hardcover
R7,296
Discovery Miles 72 960
|