![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics) > General
This book presents a fully scientific account of the use of the golden ratio. It explores the observation that stable nucleides obey a number theory based general law. The discovery described in this book could be of seminal significance, also in other fields where the golden ratio is known to be of fundamental importance.
High Field Science is a proceedings volume from a meeting at Lawrence Livermore Laboratory, and contains papers from the top experts in the fields of ultraintense laser technology, laser fusion energy, high energy laser electron acceleration, bright X-ray sources by lasers, laboratory laser astrophysics, and applications to relativity, high density and high energy physics.
Every form of life is coded by the genetic code. Life continually changes and evolves. However, the language of the Code does not change. A billion years ago, the primitive life forms on Earth spoke the same body language as they do today. They used the same Code. Nothing has changed. Is this Code eternal? What are the principles of its design? Of course, some will even ask, who designed it? In order to respond to these questions, the book takes an unexpected tack. It develops the proposition that "two takes" are necessary in order to understand reality, a left side take, and a right side take. All of present day sciences, including mathematics are based on the left side take on reality. All of the languages of present day science, including conventional mathematics, are "left side" languages. The book develops the foundations for another kind of science, the "right side" science. We call it the First Science. The book argues that the language for this right side unifying science is none other than the Code. It is here that the story becomes quite extravagant. This Code is so generic that it can code literally anything, not just the biological. In this perspective, the life principle permeates just about everything that exists. The origin of the First Science goes back to Aristotle, and even before. According to Aristotle, the First Science was even supposed to provide knowledge of God. The book explores this ancient territory with modern eyes and ends up revealing a new science and a new kind of geometry. The science is proposed as the unifying science, not only of matter and mathematics, but of consciousness and the generic form of things.
This text develops quantum theory from its basic assumptions, beginning with statics, followed by dynamics and details of applications and the needed computational techniques. The discussion is based on the view that the fundamental entities of the universe are not particles but fields, with the observed particles arising as their quanta. Quantum fields are thus introduced from the beginning, with a discussion of how they produce quanta that manifest themselves as particles. Most of the book, of course, deals with particle systems, as that is where most of the applications lie; the treatment of quantum field theory is confined to fundamental ideas and their consequences. For developing quantum dynamics, the author uses the Lagrangian technique with the principle of stationary action. The roots of this approach, which includes generating the canonical commutation rules, go back to a course taught by Julian Schwinger, filtered through many years of the author's own teaching. The text emphasizes that the wave function does not exist in physical three-dimensional space, but in configuration space, and it points out that the probabilistic features of the theory arise not from a lack of determinism but from the definition of the "state" of a system, so that many, though not all, of the counterintuitive aspects of quantum mechanics arise from its probabilistic nature and are shared by other probabilistic theories such as classical statistical mechanics. Intended for a graduate-level course in quantum mechanics, the treatment assumes a knowledge of Lagrangian and Hamiltonian mechanics, Maxwell's electrodynamics, special relativity, and the elements of
One of the most profound revolutions brought about by quantum mechanics is that it does away with the distinction between waves and particles: atoms, in particular, can exhibit all the properties that we associate with wave phenomena, such as diffraction and interference; it has recently even become possible to prepare collections of atoms in coherent states, like those of photons in a laser beam. These developments are at the core of the rapidly expanding field of atom optics. ||Atom Optics gradually leads the reader from elementary concepts to the frontiers of the field. It is organized in three parts, linear, nonlinear, and quantum atom optics. After a review of light forces on atoms and of laser cooling, the first part discusses the application of light forces to atom optical elements such as gratings, mirrors and lenses, matter-wave diffraction, and atomic traps and resonators. The discussion of nonlinear atom optics starts with a review of collisions from a viewpoint that clearly demonstrates its profound analogy with nonlinear optics. The last part, quantum atom optics, first recalls key results of many-body theory in a formulation geared specifically toward atom optics. This is followed by a discussion of atomic Bose-Einstein condensation and "atom lasers." The final chapters treat such applications as atomic solitons, four-wave mixing, superradiance, and conclude with the coherent amplification of matter waves. ||An online web component to the book, a gateway to atom optics, contains links to the leading references and journals in the field, to research sites, and to updates for the contents of the book. FROM THE REVIEWS: ¿Atom optics today has reached maturity: It has become both wave (coherent) and nonlinear atom optics. Of course that expansion required generalization in a new book. Pierre Meystre has taken just such a generalist approach in his timely ATOM OPTICS. His were the pioneering works in atom optics; to get information from the first explorer is always most valuable to the reader ¿ Recommend[ed] to all strata of the physics community.¿ ¿PHYSICS TODAY
This thesis explores the idea that the Higgs boson of the Standard
Model and the cosmological inflation are just two manifestations of
one and the same scalar field - the Higgs-inflation. By this
unification two energy scales that are separated by many orders of
magnitude are connected, thereby building a bridge between particle
physics and cosmology. An essential ingredient for making this
model consistent with observational data is a strong non-minimal
coupling to gravity. Predictions for the value of the Higgs mass as
well as for cosmological parameters are derived, and can be tested
by future experiments. The results become especially exciting in
the light of the recently announced discovery of the Higgs boson.
An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.
As a result of the advancements in algorithms and the huge increase in speed of computers over the past decade, electronic structure calculations have evolved into a valuable tool for characterizing surface species and for elucidating the pathways for their formation and reactivity. It is also now possible to calculate, including electric field effects, STM images for surface structures. To date the calculation of such images has been dominated by density functional methods, primarily because the computational cost of - curate wave-function based calculations using either realistic cluster or slab models would be prohibitive. DFT calculations have proven especially valuable for elucidating chemical processes on silicon and other semiconductor surfaces. However, it is also clear that some of the systems to which DFT methods have been applied have large non-dynamical correlation effects, which may not be properly handled by the current generation of Kohn-Sham-based density functionals. For example, our CASSCF calculations on the Si(001)/acetylene system reveal that at some geometries there is extensive 86 configuration mixing. This, in turn, could signal problems for DFT cal- lations on these systems. Some of these problem systems can be addressed using ONIOM or other "layering" methods, treating the primary region of interest with a CASMP2 or other multireference-based method, and treating the secondary region by a lower level of electronic structure theory or by use of a molecular mechanics method. ACKNOWLEDGEMENTS We wish to thank H. Jonsson, C. Sosa, D. Sorescu, P. Nachtigall, and T. -C."
How does the physical world interact with us? How is motion possible? What is space? What is matter? In "A Personal Journey into the Quantum World," author Jean Paul Corriveau answers fundamental questions about physics, cosmology, life, consciousness, and the afterlife and shows how quantum physics is the path to God. Making use of basic physics, mathematics principles and simple logic, Corriveau demonstrates that the answers to these questions lie in quantum physics, which deals with objects so incredibly small the domain is beyond our imagination. Delving into the world of quantum physics, which is the root of all things, Corriveau provides theories about and debates the following questions: What is matter? Written in an easy-to-understand format and filled with graphics, "A Personal Journey into the Quantum World" addresses the role of quantum physics while raising many more intriguing questions-questions that are just as important as the answers.
Reinvigorated by advances and insights the quantum theory of irreversible processes has recently attracted growing attention. This volume introduces the very basic concepts of semigroup dynamics of open quantum systems and reviews a variety of modern applications. Originally published as Volume 286 (1987) in Lecture in Physics, this volume has been newly typeset, revised and corrected and also expanded to include a review on recent developments.
Classical Mechanics teaches readers how to solve physics problems; in other words, how to put math and physics together to obtain a numerical or algebraic result and then interpret these results physically. These skills are important and will be needed in more advanced science and engineering courses. However, more important than developing problem-solving skills and physical-interpretation skills, the main purpose of this multi-volume series is to survey the basic concepts of classical mechanics and to provide the reader with a solid understanding of the foundational content knowledge of classical mechanics. Classical Mechanics: Newton's Laws and Uniform Circular Motion focuses on the question: 'Why does an object move?'. To answer that question, we turn to Isaac Newton. The hallmark of any good introductory physics series is its treatment of Newton's laws of motion. These laws are difficult concepts for most readers for a number of reasons: they have a reputation as being difficult concepts; they require the mastery of multiple sub-skills; and problems involving these laws can be cast in a variety of formats.
This collection of lectures and essays by eminent researchers in the field, many of them nobel laureates, is an outgrow of a special event held at CERN in late 2009, coinciding with the start of LHC operations. Careful transcriptions of the lectures have been worked out, subsequently validated and edited by the lecturers themselves. This unique insight into the history of the field includes also some perspectives on modern developments and will benefit everyone working in the field, as well as historians of science.
Scientific advances and several technical breakthroughs have led to a remarkable increase in available laser intensities over the past decades. In available ultra-intense laser fields, photon fluxes may become so high that free charge carriers interact coherently with several of the field's photons. In this thesis such nonlinear interactions are investigated for the prime example of radiation emission by electrons scattered from intense laser pulses of arbitrary temporal structure. To this end, nonlinear quantum field theory is employed taking the interaction with the laser into account exactly. After an in-depth introduction to classical particle dynamics as well as quantum field theory in nonlinearly intense laser fields the emission of one and two photons is explicitly analyzed. The results are then translated to viable technical applications, such as a scheme for the determination of the carrier-envelope phase of ultra-intense laser pulses and a proposal for detecting the strongly suppressed two-photon signal.
Remarkable progress has recently been made in the application of quantumtrajectories as the computational tool for solving quantum mechanical problems. This is the first book to present these developments in the broader context of the hydrodynamical formulation of quantum dynamics. In addition to a thorough discussion of the quantum trajectory equations of motion, there is considerable material that deals with phase space dynamics, adaptive moving grids, electronic energy transfer, and trajectories for stationary states. On the pedagogical side, a number of sections of this book will be accessible to students who have had an introductory quantum mechanics course. There is also considerable material for advanced researchers, and chapters in the book cover both methodology and applications. The book will be useful to students and researchers in physics, chemistry, applied math, and computational dynamics.
This book explores the modern physicist Niels Bohr's philosophical thought, specifically his pivotal idea of complementarity, with a focus on the relation between the roles of what he metaphorically calls "spectators" and "actors." It seeks to spell out the structural and historical complexity of the idea of complementarity in terms of different modes of the 'spectator-actor' relation, showing, in particular, that the reorganization of Bohr's thought starting from his 1935 debate with Einstein and his collaborators is characterized by an extension of the dynamic conception of complementarity from non-physical contexts to the very field of quantum theory. Further, linked with this analysis, the book situates Bohr's complementarity in contemporary philosophical context by examining its intersections with post-Heideggerian hermeneutics as well as Derridean deconstruction. Specifically, it points to both the close affinities and the differences between Bohr's idea of the 'actor-spectator' relation and the hermeneutic notion of the relation between "belonging" and "distanciation."
The centerpiece of the thesis is the search for muon neutrino to electron neutrino oscillations which would indicate a non-zero mixing angle between the first and third neutrino generations ( 13), currently the holy grail of neutrino physics. The optimal extraction of the electron neutrino oscillation signal is based on the novel library event matching (LEM) method which Ochoa developed and implemented together with colleagues at Caltech and at Cambridge, which improves MINOS (Main Injector Neutrino Oscillator Search) reach for establishing an oscillation signal over any other method. LEM will now be the basis for MINOS final results, and will likely keep MINOS at the forefront of this field until it completes its data taking in 2011. Ochoa and his colleagues also developed the successful plan to run MINOS with a beam tuned for antineutrinos, to make a sensitive test of CPT symmetry by comparing the inter-generational mass splitting for neutrinos and antineutrinos. Ochoa s in-depth, creative approach to the solution of a variety of complex experimental problems is an outstanding example for graduate students and longtime practitioners of experimental physics alike. Some of the most exciting results in this field to emerge in the near future may find their foundations in this thesis.
This book treats modern aspects of open systems, measurement, and decoherence in relativistic quantum theory. It starts with a comprehensive introduction to the problems related to measuring local and nonlocal observables and the constraints imposed by the causality principle. In the articles that follow, the emphasis lies on new theoretical models. Quantum dynamical semigroups and stochastic processes in Hilbert space are introduced, as are dynamical reduction models. Further topics include relativistic generalizations of the continuous spontaneous localization model and of the quantum state diffusion model and decoherence and the dynamical selection of preferred basis sets in the framework of continuous measurement theory and of the decoherent histories approach. Mathematical aspects of quantum measurement theory and dynamical entropies are also studied from the viewpoint of the operational approach to quantum mechanics.
Grometstein explains modern physics with enthusiasm, wit and insight. As he presents the usual milestones in the history of modern physics, his central focus is the historical debate regarding the nature of light: is it a particle or is it a wave? This book will be read by generations of students in physical science who seek a well written discussion of these important issues. Grometstein includes material which is quite recent, thus making the present volume particularly useful.
The nature of dark matter remains one of the preeminent mysteries in physics and cosmology. It appears to require the existence of new particles whose interactions to ordinary matter are extraordinarily feeble. One well-motivated candidate is the axion, an extraordinarily light neutral particle that may possibly be detected by looking for their conversion to detectable microwaves in the presence of a strong magnetic field. This has led to a number of experimental searches that are beginning to probe plausible axion model space and may discover the axion in the near future. These proceedings discuss the challenges of designing and operating tunable resonant cavities and detectors at ultralow temperatures. The topics discussed here have potential application far beyond the field of dark matter detection and may be applied to resonant cavities for accelerators as well as designing superconducting detectors for quantum information and computing applications. This work is intended for graduate students and researchers interested in learning the unique requirements for designing and operating microwave cavities and detectors for direct axion searches and to introduce several proposed experimental concepts that are still in the prototype stage.
Recently, analogies between laboratory physics (e.g. quantum optics and condensed matter) and gravitational/cosmological phenomena such as black holes have attracted an increasing interest. This book contains a series of selected lectures devoted to this new and rapidly developing field. Various analogies connecting (apparently) different areas in physics are presented in order to bridge the gap between them and to provide an alternative point of view.
Written by world-leading experts in particle physics, this new book from Luciano Maiani and Omar Benhar, with contributions from the late Nicola Cabibbo, is based on Feynman's path integrals. Key elements of gauge theories are described-Feynman diagrams, gauge-fixing, Faddeev-Popov ghosts-as well as renormalization in Quantum Electrodynamics. Quarks and QCD interactions are introduced. Renormalization group and high momentum behaviour of the coupling constants is discussed in QED and QCD, with asymptotic freedom derived at one-loop. These concepts are related to the Higgs boson and models of grand unification. "... an excellent introduction to the quantum theory of gauge fields and their applications to particle physics. ... It will be an excellent book for the serious student and a good reference for the professional practitioner. Let me add that, scattered through the pages, we can find occasional traces of Nicola Cabibbo's style." -John Iliopoulos, CNRS-Ecole Normale Superieure " ... The volume ends with an illuminating description of the expectation generated by the recent discovery of the Higgs boson, combined with the lack of evidence for super-symmetric particles in the mass range 0.6-1 TeV." -Arturo Menchaca-Rocha, FinstP, Professor of Physics, Mexico's National Autonomous University, Former President of the Mexican Academy of Sciences, Presidential Advisor "...The reader is masterfully guided through the subtleties of the quantum field theory and elementary particle physics from simple examples in Quantum Mechanics to salient details of modern theory." -Mikhail Voloshin, Professor of Physics, University of Minnesota
How does the theoretical world of quantum physics create our everyday life?
reprinted in the British trade journal Physics World in 1990, three separate and 5 lengthy replies from establishment physicists were printed in subsequent issues. For outsiders, especially scientists who rely on physicist's theories in their own fields, this situation is disquieting. Moreover, many recall their introduction to quantum mechanics as a startling, if not shocking, experience. A molecular biologist related how he had started in theoretical physics but, after hearing the ideology of quantum mechanics, marched straight to the Reg istrar's office and switched fields. A colleague recalled how her undergraduate chemistry professor religiously entertained queries from the class - until one day he began with the words: "No questions will be permitted on today's lecture." The topic, of course, was quantum mechanics. My father, an organic chemist at a Midwestern university, also had to give that dreaded annual lecture. Around age 16, I picked up a little book he used to prepare and was perplexed by the author's tone, which seemed apologetic to the point of pleading. It was my first brush with the quantum theory. 6 Eventually, I went to graduate school in physics. By then I had acquired an historical bent, which developed out of an episode in my freshman year in college. To relieve the tedium of the introductory physics course, I set out to understand Einstein's theory of relativity (the so-called Special Theory of 1905, not the later and more difficult General Theory of 1915). This went badly at first."
"Scientists other than quantum physicists often fail to comprehend the enormity of the conceptual change wrought by quantum theory in our basic conception of the nature of matter," writes Henry Stapp. Stapp is a leading quantum physicist who has given particularly careful thought to the implications of the theory that lies at the heart of modern physics. In this book, which contains several of his key papers as well as new material, he focuses on the problem of consciousness and explains how quantum mechanics allows causally effective conscious thought to be combined in a natural way with the physical brain made of neurons and atoms. The book is divided into four sections. The first consists of an extended introduction. Key foundational and somewhat more technical papers are included in the second part, together with a clear exposition of the "orthodox" interpretation of quantum mechanics. The third part addresses, in a non-technical fashion, the implications of the theory for some of the most profound questions that mankind has contemplated: How does the world come to be just what it is and not something else? How should humans view themselves in a quantum universe? What will be the impact on society of the revised scientific image of the nature of man? The final part contains a mathematical appendix for the specialist and a glossary of important terms and ideas for the interested layman. This third edition has been significantly expanded with two new chapters covering the author's most recent work. |
![]() ![]() You may like...
New Developments in Formal Languages and…
Gemma Bel-Enguix, M. Dolores Jimenez-Lopez, …
Hardcover
R4,509
Discovery Miles 45 090
Recent Trends in Mathematical Modeling…
Vinai K. Singh, Yaroslav D. Sergeyev, …
Hardcover
R6,393
Discovery Miles 63 930
Mathematical Modelling - Education…
C Haines, P. Galbraith, …
Paperback
Predictive Analytics in System…
Vijay Kumar, Hoang Pham
Hardcover
Semantic Analysis of Verbal Collocations…
Alexander Gelbukh, Olga Kolesnikova
Hardcover
R4,348
Discovery Miles 43 480
|