![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics) > General
The majority of the "memorable" results of relativistic quantum theory were obtained within the framework of the local quantum field approach. The explanation of the basic principles of the local theory and its mathematical structure has left its mark on all modern activity in this area. Originally, the axiomatic approach arose from attempts to give a mathematical meaning to the quantum field theory of strong interactions (of Yukawa type). The fields in such a theory are realized by operators in Hilbert space with a positive Poincare-invariant scalar product. This "classical" part of the axiomatic approach attained its modern form as far back as the sixties. * It has retained its importance even to this day, in spite of the fact that nowadays the main prospects for the description of the electro-weak and strong interactions are in connection with the theory of gauge fields. In fact, from the point of view of the quark model, the theory of strong interactions of Wightman type was obtained by restricting attention to just the "physical" local operators (such as hadronic fields consisting of ''fundamental'' quark fields) acting in a Hilbert space of physical states. In principle, there are enough such "physical" fields for a description of hadronic physics, although this means that one must reject the traditional local Lagrangian formalism. (The connection is restored in the approximation of low-energy "phe nomenological" Lagrangians."
The subject of this book is a new mathematical technique, the stochastic limit, developed for solving nonlinear problems in quantum theory involving systems with infinitely many degrees of freedom (typically quantum fields or gases in the thermodynamic limit). This technique is condensed into some easily applied rules (called "stochastic golden rules"), which allow us to single out the dominating contributions to the dynamical evolution of systems in regimes involving long times and small effects. In the stochastic limit the original Hamiltonian theory is approximated using a new Hamiltonian theory which is singular. These singular Hamiltonians still define a unitary evolution, and the new equations give much more insight into the relevant physical phenomena than the original Hamiltonian equations. Especially, one can explicitly compute multi-time correlations (e.g. photon statistics) or coherent vectors, which are beyond the reach of typical asymptotic techniques.
The author develops a novel analysis method for QCD sum rules (QCDSR) by applying the maximum entropy method (MEM) to arrive at an analysis with less artificial assumptions than previously held. This is a first-time accomplishment in the field. In this thesis, a reformed MEM for QCDSR is formalized and is applied to the sum rules of several channels: the light-quark meson in the vector channel, the light-quark baryon channel with spin and isospin 1/2, and several quarkonium channels at both zero and finite temperatures. This novel technique of combining QCDSR with MEM is applied to the study of quarkonium in hot matter, which is an important probe of the quark-gluon plasma currently being created in heavy-ion collision experiments at RHIC and LHC.
This edited volume examines aspects of the mind/consciousness that are relevant to the interpretations of quantum mechanics. In it, an international group of contributors focus on the possible connections between quantum mechanics and consciousness. They look at how consciousness can help us with quantum mechanics as well as how quantum mechanics can contribute to our understanding of consciousness. For example, what do different interpretations aimed at solving the measurement problem in quantum mechanics tell us about the nature of consciousness, such as von Neumann's interpretation? Each interpretation has, associated to it, a corresponding metaphysical framework that helps us think about possible "models" of consciousness. Alternatively, what does the nature of consciousness tell us about the role of the observer and time reversibility in the measurement process? The book features 20 papers on contemporary approaches to quanta and mind. It brings together the work of scholars from different disciplines with diverse views on the connections between quanta and mind, ranging from those who are supportive of a link between consciousness and quantum physics to those who are very skeptical of such link. Coverage includes such topics as free will in a quantum world, contextuality and causality, mind and matter interaction, quantum panpsychism, the quantum and quantum-like brain, and the role of time in brain-mind dynamics.
Is it possible to approach quantum theory in a 'therapeutic' vein that sees its foundational problems as arising from mistaken conceptual presuppositions? The book explores the prospects for this project and, in doing so, discusses such fascinating issues as the nature of quantum states, explanation in quantum theory, and 'quantum non-locality'.
This book introduces the quantum mechanical framework to information retrieval scientists seeking a new perspective on foundational problems. As such, it concentrates on the main notions of the quantum mechanical framework and describes an innovative range of concepts and tools for modeling information representation and retrieval processes. The book is divided into four chapters. Chapter 1 illustrates the main modeling concepts for information retrieval (including Boolean logic, vector spaces, probabilistic models, and machine-learning based approaches), which will be examined further in subsequent chapters. Next, chapter 2 briefly explains the main concepts of the quantum mechanical framework, focusing on approaches linked to information retrieval such as interference, superposition and entanglement. Chapter 3 then reviews the research conducted at the intersection between information retrieval and the quantum mechanical framework. The chapter is subdivided into a number of topics, and each description ends with a section suggesting the most important reference resources. Lastly, chapter 4 offers suggestions for future research, briefly outlining the most essential and promising research directions to fully leverage the quantum mechanical framework for effective and efficient information retrieval systems. This book is especially intended for researchers working in information retrieval, database systems and machine learning who want to acquire a clear picture of the potential offered by the quantum mechanical framework in their own research area. Above all, the book offers clear guidance on whether, why and when to effectively use the mathematical formalism and the concepts of the quantum mechanical framework to address various foundational issues in information retrieval.
This book confirms noncommutative geometry as an increasingly useful tool for the description of intricate condensed matter phenomena. It describes the striking progress recently made in gathering all the interactions and fields of the standard model into a non-commutative geometry on a simple internal space. Coverage also details the very recent technique of renormalization of quantum field theories on non-commutative space-time.
The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including most recent developments. Besides that, the collection of articles also serves as an up-to-date handbook of available algorithms/software that are commonly used or might be useful in the fields of mathematics, physics or other sciences.
This book presents a distinctive way of understanding quantum correlations beyond entanglement, introducing readers to this less explored yet very fundamental aspect of quantum theory. It takes into account most of the new ideas involving quantum phenomena, resources, and applications without entanglement, both from a theoretical and an experimental point of view. This book serves as a reference for both beginner students and experienced researchers in physics and applied mathematics, with an interest in joining this novel venture towards understanding the quantum nature of the world.
To read a good book on nano science and technology, readers should have a reasonable grasp of quantum mechanics, which is exhaustively discussed in the first chapter. To be concerned with the technique of preparation of nano particles, two chapters are devoted on how to make different types of nano materials that are useful for various applications with their mechanical properties. The rest deals with the most important properties like magnetic, electronic and optical phenomena of nano materials citing the most useful and well-studied materials of importance today.The author illustrates the novel techniques such as sol-gel method, Mossbauer spectroscopy for supermagnetic behaviour of nano-sized magnetite and many other methods, in order to have an edge on the interpretation of the experimental data to be able to elucidate the observed interesting property. All these subjects are given due importance as it is attracting a lot of attention of the scientists and technologists on the one hand, and on the other hand, both undergraduate and postgraduate students of various universities and institutes.
The book provides theoretical methods of connecting discrete-variable quantum information processing to continuous-variable one. It covers the two major fields of quantum information processing, quantum communication and quantum computation, leading to achievement of a long-sought full security of continuous-variable quantum key distribution (QKD) and proposal of a resource-efficient method for optical quantum computing. Firstly, the book provides a security of continuous-variable QKD against arbitrary attacks under a realistic condition such as finite communication rounds and the use of digitized information processing. The book also provides the unified view for conventionally used approximate Gottesman-Kitaev-Preskill (GKP) codes, which encodes qudits on a continuous-variable system, enabling direct comparison between researches based on different approximations.  The book finally proposes a resource-efficient method to realize the universal optical quantum computation using the GKP code via the direct preparation of the GKP magic state instead of GKP Pauli states. Feasibility of the proposed protocol is discussed based on the existing experimental proposals for the GKP state preparation.
What could the ancient Egyptians tell us about 3D printing? How can we make lithium-ion batteries greener and more sustainable? Which materials will form the heart of future quantum computers? Plastic films, glass optical fibers, silicon crystals, and more - this book is about the history of the materials that have rapidly transformed our society over the last century and their role in the major global challenges of the future. From metal alloys ushering in a new age of industry to advanced materials laying the atomic brickwork of the Digital Revolution, the book examines the societal impact of the modern materials revolution through the twin lenses of stability and sustainability. Why aren't maglev trains mainstream? Whatever happened to graphene and carbon nanotubes? The book also looks at the unmet promises of some of the most exciting - and hyped - technologies in recent decades - superconductivity and nanotechnology. The final chapter reviews our history of materials usage, the increasing demand for many critical raw materials, and addresses the upcoming new challenges for creating a circular economy based on reusing and recycling materials.
This monograph offers a concise overview of the theoretical description of various collective phenomena in condensed matter physics. These effects include the basic electronic structure in solid state physics, lattice vibrations, superconductivity, light-matter interaction and more advanced topics such as martensitic transistions.
"Elements of Quantum Mechanics" targets as a text for studying and teaching Non-Relativistic Quantum Mechanics for advanced undergraduate and postgraduate students, teachers and faculty at colleges, universities and research institutions, and also for research scholars who need a clear understanding of basics and methods.The chapters are segregated according to the need and demand of courses to be taught for the semesters and for advanced studies. The historical evolution of quantum theory and the need for a radical change in outlook is explained in brief. In order to make the presentation as self-contained as possible, necessary mathematical methods are introduced, building on simple intuitive notions with which the students are familiar. Quantization of the Electro-magnetic field as needed for radiative transitions in atomic, molecular and nuclear physics is simply explained. Field theoretic methods for many-body problems often not treated adequately in introductory textbooks is introduced in the last chapter.
Quantum measurement (Le., a measurement which is sufficiently precise for quantum effects to be essential) was always one of the most impor tant points in quantum mechanics because it most evidently revealed the difference between quantum and classical physics. Now quantum measure ment is again under active investigation, first of all because of the practical necessity of dealing with highly precise and complicated measurements. The nature of quantum measurement has become understood much bet ter during this new period of activity, the understanding being expressed by the concept of decoherence. This term means a physical process lead ing from a pure quantum state (wave function) of the system prior to the measurement to its state after the measurement which includes classical elements. More concretely, decoherence occurs as a result of the entangle ment of the measured system with its environment and results in the loss of phase relations between components of the wave function of the measured system. Decoherence is essentially nothing else than quantum measurement, but considered from the point of view of its physical mechanism and resolved in time. The present book is devoted to the two concepts of quantum measure ment and decoherence and to their interrelation, especially in the context of continuous quantum measurement."
This book covers recent developments in the understanding, quantification, and exploitation of entanglement in spin chain models from both condensed matter and quantum information perspectives. Spin chain models are at the foundation of condensed matter physics and quantum information technologies and elucidate many fundamental phenomena such as information scrambling, quantum phase transitions, and many-body localization. Moreover, many quantum materials and emerging quantum devices are well described by spin chains. Comprising accessible, self-contained chapters written by leading researchers, this book is essential reading for graduate students and researchers in quantum materials and quantum information. The coverage is comprehensive, from the fundamental entanglement aspects of quantum criticality, non-equilibrium dynamics, classical and quantum simulation of spin chains through to their experimental realizations, and beyond into machine learning applications.
After about a century of success, physicists feel the need to probe the limits of validity of special-relativity base theories. This book is the outcome of a special seminar held on this topic. The authors gather in a single volume an extensive collection of introductions and reviews of the various facets involved, and also includes detailed discussion of philosophical and historical aspects.
In the past decade, there has been a sudden and vigorous development in a number of research areas in mathematics and mathematical physics, such as theory of operator algebras, knot theory, theory of manifolds, infinite dimensional Lie algebras and quantum groups (as a new topics), etc. on the side of mathematics, quantum field theory and statistical mechanics on the side of mathematical physics. The new development is characterized by very strong relations and interactions between different research areas which were hitherto considered as remotely related. Focussing on these new developments in mathematical physics and theory of operator algebras, the International Oji Seminar on Quantum Analysis was held at the Kansai Seminar House, Kyoto, JAPAN during June 25-29, 1992 by a generous sponsorship of the Japan Society for the Promotion of Science and the Fujihara Foundation of Science, as a workshop of relatively small number of (about 50) invited participants. This was followed by an open Symposium at RIMS, described below by its organizer, A. Kishimoto. The Oji Seminar began with two key-note addresses, one by V.F.R. Jones on Spin Models in Knot Theory and von Neumann Algebras and by A. Jaffe on Where Quantum Field Theory Has Led. Subsequently topics such as Subfactors and Sector Theory, Solvable Models of Statistical Mechanics, Quantum Field Theory, Quantum Groups, and Renormalization Group Ap proach, are discussed. Towards the end, a panel discussion on Where Should Quantum Analysis Go? was held."
Following the emergence of quantum computing, the subsequent quantum revolution will be that of interconnecting individual quantum computers at the global level. In the same way that classical computers only realised their full potential with the emergence of the internet, a fully-realised quantum internet is the next stage of evolution for quantum computation. This cutting-edge book examines in detail how the quantum internet would evolve in practise, focusing not only on the technology itself, but also the implications it will have economically and politically, with numerous non-technical sections throughout the text providing broader context to the discussion. The book begins with a description of classical networks before introducing the key concepts behind quantum networks, such as quantum internet protocols, quantum cryptography, and cloud quantum computing. Written in an engaging style and accessible to graduate students in physics, engineering, computer science and mathematics.
Making Sense of Inner Sense
This thesis addresses in a very new and elegant way several measurements and the extraction of so-called double parton scattering. The new and elegant way lies in the combination of measurements and a very smart extraction of double parton scattering results, which is easy to apply and overcomes many of the technical difficulties of older methods. Many new phenomena in particle physics can be observed when particles are collided at the highest energies; one of the highlights in recent years was the discovery of the Higgs boson at the Large Hadron Collider at CERN. Understanding the production mechanism of the Higgs boson at the LHC requires detailed knowledge of the physics of proton-proton collisions. When the density of partons in the protons becomes large, there is a non-negligible probability that more than one parton participates in the interaction and the so-called double parton scattering becomes important. In some cases very particular final state signatures can be observed, which can be regarded as an indication of such double partonic scattering and where the different interactions can be separated. Such multiple partonic interactions play an important role when precise predictions from known processes are required.
This book, addressing both researchers and graduate students, reviews equivariant localization techniques for the evaluation of Feynman path integrals. The author gives the relevant mathematical background in some detail, showing at the same time how localization ideas are related to classical integrability. The text explores the symmetries inherent in localizable models for assessing the applicability of localization formulae. Various applications from physics and mathematics are presented. |
You may like...
Edsger Wybe Dijkstra - His Life, Work…
Krzysztof R. Apt, Tony Hoare
Hardcover
R2,920
Discovery Miles 29 200
macOS Support Essentials 12 - Apple Pro…
Benjamin Levy, Adam Karneboge, …
Paperback
R1,429
Discovery Miles 14 290
Shell Programming in Unix, Linux and OS…
Stephen Kochan, Patrick Wood
Paperback
R909
Discovery Miles 9 090
OS X and iOS Kernel Programming
Ole Henry Halvorsen, Douglas Clarke
Paperback
R2,056
Discovery Miles 20 560
Wanted Dead & Alive - The Case For South…
Gregory Mthembu-Salter
Paperback
|