![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Quantum physics (quantum mechanics) > General
This book is a contribution to a problem in foundational studies, the problem of the interpretation of quantum mechanics, in the sense of the theoretical significance of the transition from classical to quantum mechanics. The obvious difference between classical and quantum mechanics is that quantum mechanics is statistical and classical mechanics isn't. Moreover, the statistical character of the quantum theory appears to be irreducible: unlike classical statistical mechanics, the probabilities are not generated by measures on a probability space, i. e. by distributions over atomic events or classical states. But how can a theory of mechanics be statistical and complete? Answers to this question which originate with the Copenhagen inter pretation of Bohr and Heisenberg appeal to the limited possibilities of measurement at the microlevel. To put it crudely: Those little electrons, protons, mesons, etc., are so tiny, and our fingers so clumsy, that when ever we poke an elementary particle to see which way it will jump, we disturb the system radically - so radically, in fact, that a considerable amount of information derived from previous measurements is no longer applicable to the system. We might replace our fingers by finer probes, but the finest possible probes are the elementary particles them selves, and it is argued that the difficulty really arises for these."
The revised edition of this book offers an extended overview of quantum walks and explains their role in building quantum algorithms, in particular search algorithms. Updated throughout, the book focuses on core topics including Grover's algorithm and the most important quantum walk models, such as the coined, continuous-time, and Szedgedy's quantum walk models. There is a new chapter describing the staggered quantum walk model. The chapter on spatial search algorithms has been rewritten to offer a more comprehensive approach and a new chapter describing the element distinctness algorithm has been added. There is a new appendix on graph theory highlighting the importance of graph theory to quantum walks. As before, the reader will benefit from the pedagogical elements of the book, which include exercises and references to deepen the reader's understanding, and guidelines for the use of computer programs to simulate the evolution of quantum walks. Review of the first edition: "The book is nicely written, the concepts are introduced naturally, and many meaningful connections between them are highlighted. The author proposes a series of exercises that help the reader get some working experience with the presented concepts, facilitating a better understanding. Each chapter ends with a discussion of further references, pointing the reader to major results on the topics presented in the respective chapter." - Florin Manea, zbMATH.
One of the major scientific thrusts in recent years has been to try to harness quantum phenomena to increase dramatically the performance of a wide variety of classical information processing devices.
David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum error correction, and other related topics.
The International Conference on Laser Physics and Quantum Optics was held in Shanghai from August 25 to August 28, 1999, to discuss many exciting new developments in laser physics and quantum optics. The international character of the conference was manifested by the fact that scientists from over 13 countries participated and lectured at the conference. There were four keynote lectures delivered by Nobel laureate Willis Lamb, Jr., Profs. H. Walther, A.E. Siegman and M.O. Scully. In addition, there were 34 invited lectures, 27 contributed oral presentations, and 59 poster papers. This volume contains many of the papers presented at the conference.
This work explores the scope and flexibility afforded by integrated quantum photonics, both in terms of practical problem-solving, and for the pursuit of fundamental science. The author demonstrates and fully characterizes a two-qubit quantum photonic chip, capable of arbitrary two-qubit state preparation. Making use of the unprecedented degree of reconfigurability afforded by this device, a novel variation on Wheeler's delayed choice experiment is implemented, and a new technique to obtain nonlocal statistics without a shared reference frame is tested. Also presented is a new algorithm for quantum chemistry, simulating the helium hydride ion. Finally, multiphoton quantum interference in a large Hilbert space is demonstrated, and its implications for computational complexity are examined.
Butterfly in the Quantum World by Indu Satija, with contributions by Douglas Hofstadter, is the first book ever to tell the story of the "Hofstadter butterfly", a beautiful and fascinating graph lying at the heart of the quantum theory of matter. The butterfly came out of a simple-sounding question: What happens if you immerse a crystal in a magnetic field? What energies can the electrons take on? From 1930 onwards, physicists struggled to answer this question, until 1974, when graduate student Douglas Hofstadter discovered that the answer was a graph consisting of nothing but copies of itself nested down infinitely many times. This wild mathematical object caught the physics world totally by surprise, and it continues to mesmerize physicists and mathematicians today. The butterfly plot is intimately related to many other important phenomena in number theory and physics, including Apollonian gaskets, the Foucault pendulum, quasicrystals, the quantum Hall effect, and many more. Its story reflects the magic, the mystery, and the simplicity of the laws of nature, and Indu Satija, in a wonderfully personal style, relates this story, enriching it with a vast number of lively historical anecdotes, many photographs, beautiful visual images, and even poems, making her book a great feast, for the eyes, for the mind and for the soul.
This PhD thesis focuses on the search for flavor-changing neutral currents in the decay of a top quark to an up-type quark (q = u, c) and the Standard Model Higgs boson, where the Higgs boson decays to bb. Further, the thesis presents the combination of this search for top quark pair events with other ATLAS searches - in the course of which the most restrictive bounds to date on tqH interactions were obtained. Following on from the discovery of the Higgs boson, it is particularly important to measure the Yukawa couplings of the Standard Model fermions; these parameters may provide crucial insights to help solve the flavor puzzle and may help reveal the presence of new physics before it is directly observed in experiments.
Interquanta (IQ), an interactive program on quantum mechanics allows students to do their own quantum physics experiments on the computer, and to study in 3D color graphics such quantities as complex probability amplitude, eigencalues, scattering cross sections, and more. By experiencing many such computer experiments, students gain a unique, "hands-on" experience in quantum physics which is otherwise difficult to achieve. The graphic features include two-and three-dimensional graphics in the form of static frames and motion pictures. Students do no programming, and hence need no previous detailed knowledge of this. The program has a very convenient, self-explanatory user interface based on the Java software technology. The book provides a recapitulation of the basic quantum mechanical formula, a manual to the IQ program, and a complete course with more than 300 tested problems. Fully automatic demonstration sessions are provided as introduction to interactive work. Physics topics covered include free particles, bound states and scattering in various potentials in one and three space dimensions, two-particle systems, properties of special functions of mathematical physics.
In this thesis, the author describes the development of a software framework to systematically construct a particular class of weakly coupled free fermionic heterotic string models, dubbed gauge models. In their purest form, these models are maximally supersymmetric (N = 4), and thus only contain superpartners in their matter sector. This feature makes their systematic construction particularly efficient, and they are thus useful in their simplicity. The thesis first provides a brisk introduction to heterotic strings and the spin-structure construction of free fermionic models. Three systematic surveys are then presented, and it is conjectured that these surveys are exhaustive modulo redundancies. Finally, the author presents a collection of metaheuristic algorithms for searching the landscape for models with a user-specified spectrum of phenomenological properties, e.g. gauge group and number of spacetime supersymmetries. Such algorithms provide the groundwork for extended generic free fermionic surveys.
This volume contains the Proceedings of the NATO Advanced Study Institute "Quantum Optics and Experimental General Relativity" which was held in Bad Windsheim, Federal Republic of Germany, from August 16 to 29, 1981. At first glance, one might wonder why a meeting should cover these two topics, and a good bit of quantum measurement theory as well, all of which seem to be completely unrelated. The key to what one may call this grand unification lies in the effort, underway in a number of laboratories around the world, to detect gravitational radiation. Present research is pursuing the development of two types of detectors: laser interferometers and resonant bar detectors. Be cause the signals that one is trying to measure are so weak the quan tum mechanical nature of the detectors comes into play. The analy sis of the effects which result from this is facilitated by the use of techniques which have been developed in quantum optics over the years. This analysis also forces one to confront certain issues in the quantum theory of measurement. The laser interferometer detectors, using as they do light, are clearly within the realm of subjects usually considered by quantum optics. For example, the analysis of the noise present in such a de tector can make use of the many techniques which have been developed in quantum optics."
This book covers a broad range of important topics and recent developments in this field. First, the general language of quantum field theory is developed in a way appropriate for dealing with systems having a large number of degrees of freedom. This paves the way for a description of the basic processes in such systems, the emphasis being on phase transitions. Applications include various aspects of superfluidity and superconductivity, as well as a detailed description of the fractional quantum Hall liquid.This monograph addresses graduate students and researchers working in related disciplines looking for an approachable but thorough introduction to the field of condensed matter physics.
Experimental progress over the past few years has made it possible to test a n- ber of fundamental physical concepts related to the motion of electrons in low dimensions. The production and experimental control of novel structures with typical sizes in the sub-micrometer regime has now become possible. In parti- lar, semiconductors are widely used in order to con?ne the motion of electrons in two-dimensional heterostructures. The quantum Hall e?ect was one of the ?rst highlights of the new physics that is revealed by this con?nement. In a further step of the technological development in semiconductor-heterostructures, other arti?cial devices such as quasi one-dimensional 'quantum wires' and 'quantum dots' (arti?cial atoms) have also been produced. These structures again di?er very markedly from three- and two-dimensional systems, especially in relation to the transport of electrons and the interaction with light. Although the technol- ical advances and the experimental skills connected with these new structures are progressing extremely fast, our theoretical understanding of the physical e?ects (such as the quantum Hall e?ect) is still at a very rudimentary level. In low-dimensional structures, the interaction of electrons with one another and with other degrees of freedoms such as lattice vibrations or light gives rise to new phenomena that are very di?erent from those familiar in the bulk ma- rial. The theoretical formulation of the electronic transport properties of small devices may be considered well-established, provided interaction processes are neglected.
Quantum physics may appear complicated, especially if one forgets the "big picture" and gets lost in the details. However, it can become clearer and less tangled if one applies a few fundamental concepts so that simplified approaches can emerge and estimated orders of magnitude become clear. Povh and Rosina's Scattering and Structures presents the properties of quantum systems (elementary particles, nucleons, atoms, molecules, quantum gases, quantum liquids, stars, and early universe) with the help of elementary concepts and analogies between these seemingly different systems. In this new edition, sections on quantum gases and an up to date overview of elementary particles have been added.
The second edition of these notes has been completely rewritten and substantially expanded with the intention not only to improve the use of the book as an int- ductory text to conformal ?eld theory, but also to get in contact with some recent developments. In this way we take a number of remarks and contributions by re- ers of the ?rst edition into consideration who appreciated the rather detailed and self-contained exposition in the ?rst part of the notes but asked for more details for the second part. The enlarged edition also re?ects experiences made in seminars on the subject. The interest in conformal ?eld theory has grown during the last 10 years and several texts and monographs re?ecting different aspects of the ?eld have been p- lished as, e. g. , the detailed physics-oriented introduction of Di Francesco, Mathieu, 1 and Sen ' echal ' [DMS96*], the treatment of conformal ?eld theories as vertex - gebras by Kac [Kac98*], the development of conformal ?eld theory in the context of algebraic geometry as in Frenkel and Ben-Zvi [BF01*] and more general by Beilinson and Drinfeld [BD04*]. There is also the comprehensive collection of ar- clesbyDeligne,Freed,Witten,andothersin[Del99*]aimingtogiveanintroduction to strings and quantum ?eld theory for mathematicians where conformal ?eld theory is one of the main parts of the text. The present expanded notes complement these publications by giving an elementary and comparatively short mathematics-oriented introduction focusing on some main principles.
Niels Bohr and Philosophy of Physics: Twenty-First Century Perspectives examines the philosophical views, influences and legacy of the Nobel Prize physicist and philosophical spokesman of the quantum revolution, Niels Bohr. The sixteen contributions in this collection by some of the best contemporary philosophers and physicists writing on Bohr's philosophy today all carefully distinguish his subtle and unique interpretation of quantum mechanics from views often imputed to him under the banner of the "Copenhagen Interpretation." With respect to philosophical influences on Bohr's outlook, the contributors analyse prominent similarities between his viewpoint and Kantian ways of thinking, the views of the Danish philosopher Harald Hoffding, and themes characteristic of American pragmatism. In recognizing the importance of Bohr's epistemological naturalism they examine his defence of the indispensability of classical concepts from a variety of different perspectives. This collection shows us that Bohr's interpretation of quantum mechanics, now nearly a century old, still has the power to shed light on a variety of issues that have arisen only since his lifetime, as well as decoherence theory and other non-collapse interpretations. Balancing historical themes with contemporary discussions, Niels Bohr and the Philosophy of Physics establishes Bohr's on-going contribution to the philosophy of physics and examines his place in the history of philosophy.
This book contains the proceedings of the International Conference on Mathematical Results in Quantum Mechanics held in Blossin, Germany, May 17-21, 1993. Its purpose is to draw attention to the recent developments in quantum mechanics and related mathematical problems. The book is addressed to the wide audience of mathematicians and physicists interested in contemporary quantum physics and associated mathematical problems. The reader will find sections not only on traditional subjects such as SchrAdinger and Dirac operators and generalized SchrAdinger generators, but also on stochastic spectral analysis, many-body problems and statistical physics, chaos, and operator theory and its applications. Contributors: SchrAdinger and Dirac operators: M.Sh. Birman, V. Grecchi, R. Hempel, M. Hoffmann-Ostenhof, Y. Saito, G. Stolz, M. Znojil a Generalized SchrAdinger operators: J.-P. Antoine, J.F. Brasche, P. Duclos, R. Hempel, M. Klein, P. Stovicek a Stochastic spectral analysis: M. Demuth, V.A. Liskevich, E.M. Ouhabaz, P. Stollmann a Many-body problems and statistical physics: M. Fannes, R. Gielerak, M. HA1/4bner, A.M. Khorunzhy, H. Lange, N. Macris, Yu.A. Petrina, K.B. Sinha, A. Verbeure a Chaos: J. Dittrich, P. Seba, K. Zyczkowski a Operator theory and its application: F. Bentosela, V. Buslaev, A.N. Kochubei, A.Yu. Konstantinov, V. Koshmanenko, H. Neidhardt, G. Nenciu, D. Robert
The first volume (General Theory) differs from most textbooks as it emphasizes the mathematical structure and mathematical rigor, while being adapted to the teaching the first semester of an advanced course in Quantum Mechanics (the content of the book are the lectures of courses actually delivered.). It differs also from the very few texts in Quantum Mechanics that give emphasis to the mathematical aspects because this book, being written as Lecture Notes, has the structure of lectures delivered in a course, namely introduction of the problem, outline of the relevant points, mathematical tools needed, theorems, proofs. This makes this book particularly useful for self-study and for instructors in the preparation of a second course in Quantum Mechanics (after a first basic course). With some minor additions it can be used also as a basis of a first course in Quantum Mechanics for students in mathematics curricula. The second part (Selected Topics) are lecture notes of a more advanced course aimed at giving the basic notions necessary to do research in several areas of mathematical physics connected with quantum mechanics, from solid state to singular interactions, many body theory, semi-classical analysis, quantum statistical mechanics. The structure of this book is suitable for a second-semester course, in which the lectures are meant to provide, in addition to theorems and proofs, an overview of a more specific subject and hints to the direction of research. In this respect and for the width of subjects this second volume differs from other monographs on Quantum Mechanics. The second volume can be useful for students who want to have a basic preparation for doing research and for instructors who may want to use it as a basis for the presentation of selected topics.
2 Homogeneous superconducting state 210 3 Superconducting phases with broken space symmetries 213 4 Flavor asymmetric quark condensates 219 5 Concluding remarks 221 Acknowledgments 222 References 223 Neutral Dense Quark Matter 225 Mei Huang and Igor Shovkovy 1 Introduction 225 2 Local charge neutrality: homogeneous phase 226 3 Global charge neutrality: mixed phase 234 4 Conclusion 238 References 238 Possibility of color magnetic superconductivity 241 Toshitaka Tatsumi, Tomoyuki Maruyama, and Eiji Nakano 1 Introduction 241 2 What is ferromagnetism in quark matter? 243 3 Color magnetic superconductivity 248 4 Chiral symmetry and magnetism 253 5 Summary and Concluding remarks 258 Acknowledgments 260 References 260 Magnetic Fields of Compact Stars with Superconducting Quark Cores 263 David M. Sedrakian, David Blaschke, and Karen M. Shahabasyan 1 Introduction 263 2 Free Energy 265 3 Ginzburg-Landau equations 267 4 Vortex Structure 269 5 Solution of Ginzburg-Landau Equations 271 6 The Magnetic Field Components 273 7 Summary 275 Acknowledgments 275 References 275 Thermal Color-superconducting Fluctuations in Dense Quark Matter 277 D. N.
Classical Mechanics teaches readers how to solve physics problems; in other words, how to put math and physics together to obtain a numerical or algebraic result and then interpret these results physically. These skills are important and will be needed in more advanced science and engineering courses. However, more important than developing problem-solving skills and physical-interpretation skills, the main purpose of this multi-volume series is to survey the basic concepts of classical mechanics and to provide the reader with a solid understanding of the foundational content knowledge of classical mechanics. Classical Mechanics: Kinematics and Uniformly Accelerated Motion focuses on the difference between asking, 'How does an object move?' and 'Why does an object move?'. This distinction requires a paradigm shift in the mind of the reader. Therefore, the reader must train themselves to clarify, 'Am I trying to describe how the object moves or why the object moves?'.
Quantum Mechanics I: The Fundamentals provides a graduate-level account of the behavior of matter and energy at the molecular, atomic, nuclear, and sub-nuclear levels. It covers basic concepts, mathematical formalism, and applications to physically important systems. This fully updated new edition addresses many topics not typically found in books at this level, including: Bound state solutions of quantum pendulum Morse oscillator Solutions of classical counterpart of quantum mechanical systems A criterion for bound state Scattering from a locally periodic potential and reflection-less potential Modified Heisenberg relation Wave packet revival and its dynamics An asymptotic method for slowly varying potentials Klein paradox, Einstein-Podolsky-Rosen (EPR) paradox, and Bell's theorem Delayed-choice experiments Fractional quantum mechanics Numerical methods for quantum systems A collection of problems at the end of each chapter develops students' understanding of both basic concepts and the application of theory to various physically important systems. This book, along with the authors' follow-up Quantum Mechanics II: Advanced Topics, provides students with a broad, up-to-date introduction to quantum mechanics. Print Versions of this book also include access to the ebook version.
Taking a new perspective provided by a generalization of the mathematical formalism encompassing positive operator-valued measures, this book views old and new problems of the foundations of quantum mechanics. It demonstrates the crucial role of the generalized formalism in fundamental issues and practical applications.
Recent developments in supersymmetric field theory, string theory, and brane theory have been revolutionary. The main focus of the present volume is developments of M-theory and its applications to superstring theory, quantum gravity, and the theory of elementary particles. Topics included are D-branes, boundary states, and world volume solitons. Anti-De-Sitter quantum field theory is explained, emphasising the way it can enforce the holography principle, together with the relation to black hole physics and the way Branes provide the microscopic interpretation for the entropy of black holes. Developments in D-branes within type-I superstring and related theories are described. There are also possible phenomenological implications of superstring theory that would lie within the range of quantum gravity effects in the future generation of accelerators, around 1 TeV. |
You may like...
The Electrostatic Accelerator - A…
Ragnar Hellborg, Harry J. Whitlow
Paperback
R754
Discovery Miles 7 540
|