![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Meteorology > General
This book presents selected papers from the 7th International Congress on Computational Mechanics and Simulation, held at IIT Mandi, India. The papers discuss the development of mathematical models representing physical phenomena and apply modern computing methods to analyze a broad range of applications including civil, offshore, aerospace, automotive, naval and nuclear structures. Special emphasis is given on simulation of structural response under extreme loading such as earthquake, blast etc. The book is of interest to researchers and academics from civil engineering, mechanical engineering, aerospace engineering, materials engineering/science, physics, mathematics and other disciplines.
This book focuses on how climatic change during the last fifteen million years - especially the last three million - has affected human evolution and other evolutionary events. Leading evolutionists and physical geologists from all over the worldauthorities on such subjects as paleoceanography, palynology, mammalian paleontology, and paleoanthropology - address the relationship between climatic and biotic evolution, presenting and integrating the most up-to-date research in their fields. Among the subjects discussed are: global and regional climatic changes; tectonism and its effects on climate; the evolution of biomes and mammals; the ways climate might have influenced the origins of hominid species; and the evolution of hominid morphologies and behaviors. The book draws on the comparatively rich data base of the Late Neogene and includes many new data sets and hypotheses on paleoclimatic changes and on floral and mammalian evolution.
Light Scattering Reviews (vol. 9) is aimed at the description of modern advances in radiative transfer and light scattering. The following topics will be considered: light scattering by atmospheric dust particles and also by inhomogeneous scatterers, the general - purpose discrete - ordinate algorithm DISORT for radiative transfer, the radiative transfer code RAY based on the adding-doubling solution of the radiative transfer equation, aerosol and cloud remote sensing, use of polarization in remote sensing, direct aerosol radiative forcing, principles of the Mueller matrix measurements, light reflectance from various land surfaces. This volume will be a valuable addition to already published volumes 1-8 of Light Scattering Reviews.
This book focuses on the interactive effects of environmental
stresses with plant and ecosystem functions, especially with
respect to changes in the abundance of carbon dioxide. The
interaction of stresses with elevated carbon dioxide are presented
from the cellular through whole plant ecosystem level. The book
carefully considers not only the responses of the above-ground
portion of the plant, but also emphasizes the critical role of
below-ground (rhizosphere) components (e.g., roots, microbes, soil)
in determining the nature and magnitude of these interactions.
During the course of this century, meteorology has become unified,
physics-based, and highly computational. Calculating the Weather:
Meteorology in the 20th Century explains this transformation by
examining thevarious roles of computation throughout the history of
meteorology, giving most attention to the period from World War I
to the 1960s. The electronic digital computer, a product of World
War II, led to great advances in empirical, theoretical, and
practical meteorology. At the same time, the use of the computer
led to the discovery of so-called"chaotic systems,"and to the
recognition that there may well be fundamental limits to predicting
the weather.
This book provides historical perspectives on the climate apprehensions of scientists and the general public from the Englightenment to the late twentieth century. Issues discussed include what people have understood, experienced, and feared about the climate and its changes in the past; how privileged and authoritative positions on climate have been established; the paths by which we have arrived at our current state of knowledge and apprehension; and what a study of the past has to offer to the interdisciplinary investigation of environmental problems.
This book provides readers with a broad understanding of the fundamental principles driving atmospheric flow over complex terrain and provides historical context for recent developments and future direction for researchers and forecasters. The topics in this book are expanded from those presented at the Mountain Weather Workshop, which took place in Whistler, British Columbia, Canada, August 5-8, 2008. The inspiration for the workshop came from the American Meteorological Society (AMS) Mountain Meteorology Committee and was designed to bridge the gap between the research and forecasting communities by providing a forum for extended discussion and joint education. For academic researchers, this book provides some insight into issues important to the forecasting community. For the forecasting community, this book provides training on fundamentals of atmospheric processes over mountainous regions, which are notoriously difficult to predict. The book also helps to provide a better understanding of current research and forecast challenges, including the latest contributions and advancements to the field. The book begins with an overview of mountain weather and forecasting chal- lenges specific to complex terrain, followed by chapters that focus on diurnal mountain/valley flows that develop under calm conditions and dynamically-driven winds under strong forcing. The focus then shifts to other phenomena specific to mountain regions: Alpine foehn, boundary layer and air quality issues, orographic precipitation processes, and microphysics parameterizations. Having covered the major physical processes, the book shifts to observation and modelling techniques used in mountain regions, including model configuration and parameterizations such as turbulence, and model applications in operational forecasting. The book concludes with a discussion of the current state of research and forecasting in complex terrain, including a vision of how to bridge the gap in the future.
Geospatial Technologies and Climate Change describes various approaches from different countries on how to use geospatial technologies to help solving climate change issues. It also details how different geospatial technologies (remote sensing, Geographical Information System...) can be used to help with climate monitoring and modeling, how to work with them and what to be careful about. This book is written by scientific experts from four different continents. Written in a comprehensive and complete way, this book is essential reading material for graduate and undergraduate students interested in these techniques and in climate change.
In this edited volume on advances in forensic geotechnical engineering, a number of technical contributions by experts and professionals in this area are included. The work is the outcome of deliberations at various conferences in the area conducted by Prof. G.L. Sivakumar Babu and Dr. V.V.S. Rao as secretary and Chairman of Technical Committee on Forensic Geotechnical Engineering of International Society for Soil Mechanics and Foundation Engineering (ISSMGE). This volume contains papers on topics such as guidelines, evidence/data collection, distress characterization, use of diagnostic tests (laboratory and field tests), back analysis, failure hypothesis formulation, role of instrumentation and sensor-based technologies, risk analysis, technical shortcomings. This volume will prove useful to researchers and practitioners alike.
This paper collection is the second volume of the LNMOB series on Road Vehicle Automation. The book contains a comprehensive review of current technical, socio-economic, and legal perspectives written by experts coming from public authorities, companies and universities in the U.S., Europe and Japan. It originates from the Automated Vehicle Symposium 2014, which was jointly organized by the Association for Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Burlingame, CA, in July 2014. The contributions discuss the challenges arising from the integration of highly automated and self-driving vehicles into the transportation system, with a focus on human factors and different deployment scenarios. This book is an indispensable source of information for academic researchers, industrial engineers, and policy makers interested in the topic of road vehicle automation.
This volume offers a comprehensive survey and a close analysis of efforts to develop actionable climate information in support of vital decisions for climate adaptation, risk management and policy. Arising from submissions and discussion at the 2011 Open Science Conference (OSC) of the World Climate Research Program (WCRP), the book addresses research and intellectual challenges which span the full range of Program activities.
Understanding the balance of society and nature is imperative when researching ecosystems and their global influence. A method of studying the health of these ecosystems is biodiversity. The more diverse the species that live in an ecosystem, the healthier it is. As the climate continues to transform, small-scale ecosystems are affected, altering their diversity. Environmentalists need a book of research that studies the specific impacts of climate change and how it affects the future of the environment. Current State and Future Impacts of Climate Change on Biodiversity is a pivotal reference source that provides vital research on biological systems and how climate change influences their health. While highlighting topics such as genetic diversity, economic valuation, and climatic conditions, this publication explores the effects of climate change as well as the methods of sustainable management within ecosystems. This book is ideally designed for environmental scientists, environmental professionals, scientists, ecologists, conservationists, government officials, policymakers, agriculturalists, environmentalists, zoologists, botanists, entomologists, urban planners, researchers, scholars, and students seeking research on current and future developments of various ecosystems.
This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space. Using satellite data to estimate precipitation from space overcomes the limitation of ground-based observations in terms of availability over remote areas and oceans as well as spatial coverage. However, the accuracy of satellite-based estimates still need to be improved. The approach introduced in this thesis takes advantage of the recent NASA satellites in observing clouds and precipitation. In addition, machine-learning techniques are also employed to make the best use of remotely-sensed "big data." The results provide a significant improvement in detecting non-precipitating areas and reducing false identification of precipitation.
This practical reference examines the structure and properties of the atmosphere, including listings of compounds in clouds, fog, rain, snow, and ice; a listing of compounds detected in the stratosphere; and a compendium of compounds in indoor air. An introduction to carcinogenicity and bioassay of atmospheric compounds is also presented. Readers will find the extensive cross-referencing especially useful--compounds can be located by chemical type, name, CAS registry number, or source.
This edited collection of works by leading climate scientists and philosophers introduces readers to issues in the foundations, evaluation, confirmation, and application of climate models. It engages with important topics directly affecting public policy, including the role of doubt, the use of satellite data, and the robustness of models. Climate Modelling provides an early and significant contribution to the burgeoning Philosophy of Climate Science field that will help to shape our understanding of these topics in both philosophy and the wider scientific context. It offers insight into the reasons we should believe what climate models say about the world but addresses the issues that inform how reliable and well-confirmed these models are. This book will be of interest to students of climate science, philosophy of science, and of particular relevance to policy makers who depend on the models that forecast future states of the climate and ocean in order to make public policy decisions.
This volume gathers the latest advances, innovations, and applications in the field of seismic engineering, as presented by leading researchers and engineers at the 1st International Workshop on Energy-Based Seismic Engineering (IWEBSE), held in Madrid, Spain, on May 24-26, 2021. The contributions cover a diverse range of topics, including energy-based EDPs, damage potential of ground motion, structural modeling in energy-based damage assessment of structures, energy dissipation demand on structural components, innovative structures with energy dissipation systems or seismic isolation, as well as seismic design and analysis. Selected by means of a rigorous peer-review process, they will spur novel research directions and foster future multidisciplinary collaborations.
This thesis presents research focusing on the improvement of high-resolution global black carbon (BC) emission inventory and application in assessing the population exposure to ambient BC. A particular focus of the thesis is on the construction of a high-resolution (both spatial and sectorial) fuel consumption database, which is used to develop the emission inventory of black carbon. Above all, the author updates the global emission inventory of black carbon, a resource subsequently used to study the atmospheric transport of black carbon over Asia with the help of a high-resolution nested model. The thesis demonstrates that spatial bias in fuel consumption and BC emissions can be reduced by means of the sub-national disaggregation approach. Using the inventory and nested model, ambient BC concentrations can be better validated against observations. Lastly, it provides a complete uncertainty analysis of global black carbon emissions, and this uncertainty is taken into account in the atmospheric modeling, helping to better understand the role of black carbon in regional and global air pollution.
This book discusses the numerical simulation of water waves, which combines mathematical theories and modern techniques of numerical simulation to solve the problems associated with waves in coastal, ocean, and environmental engineering. Bridging the gap between practical mathematics and engineering, the book describes wave mechanics, establishment of mathematical wave models, modern numerical simulation techniques, and applications of numerical models in engineering. It also explores environmental issues related to water waves in coastal regions, such as pollutant and sediment transport, and introduces numerical wave flumes and wave basins. The material is self-contained, with numerous illustrations and tables, and most of the mathematical and engineering concepts are presented or derived in the text. The book is intended for researchers, graduate students and engineers in the fields of hydraulic, coastal, ocean and environmental engineering with a background in fluid mechanics and numerical simulation methods.
This book provides comprehensive information on the youngest member of the petroleum sciences family: Oilfield Chemistry, proposes the chemical agents for addressing current problems, and explains the functions, mechanisms and synergistic effects of various chemical agents
This book, authored by a well-known researcher and expositor in meteorology, focuses on the direct link between molecular dynamics and atmospheric variation. Uniting molecular dynamics, turbulence theory, fluid mechanics and non equilibrium statistical mechanics, it is relevant to the fields of applied mathematics, physics and atmospheric sciences, and focuses on fluid flow and turbulence, as well as on temperature, radiative transfer and chemistry. With extensive references and glossary this is an ideal text for graduates and researchers in meteorology, applied mathematics and physical chemistry.
This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.
Climate change is a major challenge facing the modern world. The chemistry of air and it's influence on the climate system forms the main focus of this monograph. The book presents a problem-based approach to presenting global atmospheric processes, evaluating the effects of changing air composition as well as possibilities for interference within these processes and indicates ways for solving the problem of climate change through chemistry. The new edition includes innovations and latest research results.
The studies in this dissertation aim at advancing our scientific understandings about physical processes involved in the aerosol-cloud-precipitation interaction and quantitatively assessing the impacts of aerosols on the cloud systems with diverse scales over the globe on the basis of the observational data analysis and various modeling studies. As recognized in the Fifth Assessment Report by the Inter-government Panel on Climate Change, the magnitude of radiative forcing by atmospheric aerosols is highly uncertain, representing the largest uncertainty in projections of future climate by anthropogenic activities. By using a newly implemented cloud microphysical scheme in the cloud-resolving model, the thesis assesses aerosol-cloud interaction for distinct weather systems, ranging from individual cumulus to mesoscale convective systems. This thesis also introduces a novel hierarchical modeling approach that solves a long outstanding mismatch between simulations by regional weather models and global climate models in the climate modeling community. More importantly, the thesis provides key scientific solutions to several challenging questions in climate science, including the global impacts of the Asian pollution. As scientists wrestle with the complexities of climate change in response to varied anthropogenic forcing, perhaps no problem is more challenging than the understanding of the impacts of atmospheric aerosols from air pollution on clouds and the global circulation. |
![]() ![]() You may like...
Observations of the International Polar…
International Polar Expedition, H P (Henry Philip) Dawson
Hardcover
R1,037
Discovery Miles 10 370
The Mechanisms of Reactions Influencing…
Jack G. Calvert, John J. Orlando, …
Hardcover
R7,955
Discovery Miles 79 550
|