![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > Meteorology > General
What kind of weather is headed your way? Meteorologists make it their job to know. They tell you when sunshine is in the forecast. They tell you when it's going to rain. They spot severe storms, such as tornadoes and hurricanes, before they hit. Their work is important. It can even save lives. Read about this intriguing STEM career Created in collaboration with the Smithsonian Institution, this Smithsonian Informational Text builds reading skills while engaging students' curiosity about STEAM topics through real-world examples. Packed with factoids and informative sidebars, it features a hands-on STEAM challenge that is perfect for use in a makerspace and teaches students every step of the engineering design process. Make STEAM career connections with career advice from actual Smithsonian employees working in STEAM fields. Discover engineering innovations that solve real-world problems with content that touches on all aspects of STEAM: Science, Technology, Engineering, the Arts, and Math!
This thesis focuses on the seismic response of piles in liquefiable ground. It describes the design of a three-dimensional, unified plasticity model for large post-liquefaction shear deformation of sand, formulated and implemented for parallel computing. It also presents a three-dimensional, dynamic finite element analysis method for piles in liquefiable ground, developed on the basis of this model,. Employing a combination of case analysis, centrifuge shaking table experiments and numerical simulations using the proposed methods, it demonstrates the seismic response patterns of single piles in liquefiable ground. These include basic force-resistance mode, kinematic and inertial interaction coupling mechanism and major influence factors. It also discusses a beam on the nonlinear Winkler foundation (BNWF) solution and a modified neutral plane solution developed and validated using centrifuge experiments for piles in consolidating and reconsolidating ground. Lastly, it studies axial pile force and settlement during post-earthquake reconsolidation, showing pile axial force to be irrelevant in the reconsolidation process, while settlement is process dependent.
A thorough overview of the phenomenon of flooding, including frequency, damage, and information about organizations that help flood victims. What causes killer floods? Why are they so destructive? Can they be predicted, tamed, or eliminated? Find the answers in Natural Disasters: Floods, which discusses where and how often floods occur in the United States, how the federal government handles flood control, and the extent of the economic and social damage caused by floods.
This book provides a collection of the state-of-the-art methodologies and approaches suggested for detecting extremes, trend analysis, accounting for nonstationarities, and uncertainties associated with extreme value analysis in a changing climate. This volume is designed so that it can be used as the primary reference on the available methodologies for analysis of climate extremes. Furthermore, the book addresses current hydrometeorologic global data sets and their applications for global scale analysis of extremes. While the main objective is to deliver recent theoretical concepts, several case studies on extreme climate conditions are provided. Audience The book is suitable for teaching in graduate courses in the disciplines of Civil and Environmental Engineering, Earth System Science, Meteorology and Atmospheric Sciences.
General circulation models (GCMs), which define the fundamental dynamics of atmospheric circulation, are nowadays used in various fields of atmospheric science such as weather forecasting, climate predictions and environmental estimations. The Second Edition of this renowned work has been updated to include recent progress of high resolution global modeling. It also contains for the first time aspects of high-resolution global non-hydrostatic models that the author has been studying since the publication of the first edition. Some highlighted results from the Non-hydrostatic ICosahedral Atmospheric Model (NICAM) are also included. The author outlines the theoretical concepts, simple models and numerical methods for modeling the general circulation of the atmosphere. Concentrating on the physical mechanisms responsible for the development of large-scale circulation of the atmosphere, the book offers comprehensive coverage of an important and rapidly developing technique used in the atmospheric science. Dynamic interpretations of the atmospheric structure and their aspects in the general circulation model are described step by step.
The book examines surface rainfall processes through cloud-resolving modeling and quantitative analysis of surface rainfall budget and summarizes modeling and analysis results in recent seven years. The book shows validation of precipitation modeling against observations and derives a set of diagnostic precipitation equations. The book provides detailed discussions of the applications of precipitation equations to the examination of effects of sea surface temperature, vertical wind shear, radiation, and ice clouds on torrential rainfall processes in the tropics and mid-latitudes, and to the studies of sensitivity of precipitation modeling to uncertainty of the initial conditions and to the estimate of precipitation efficiency. The book can be used as a text book for graduate students and will be beneficial to researchers and forecasters for precipitation process studies and operational forecasts.
The climate of the Earth is always changing. As the debate over the
implications of changes in the Earth's climate has grown, the term
climate change has come to refer primarily to changes we've seen
over recent years and those which are predicted to be coming,
mainly as a result of human behavior. This book serves as a broad,
accessible guide to the science behind this often political and
heated debate by providing scientific detail and evidence in
language that is clear to both the non-specialist and the serious
student.
Why did T-Rex become extinct? Why did the Mayan civilization
disappear? If the ancient Israelis did indeed cross the Red Sea, as
reported in the Bible, what weather phenomena might have produced
the parting of the waters? Why was nearly all human life swept away
73,000 years ago? And what factors created the Great American
Dustbowl of the 1930s?
This is the first book dedicated to the developing knowledge on how
the world's largest ice sheet formed and changed over its 34
million years history. In explaining the story of Antartica,
information on terrestrial and marine geology, sedimentology,
glacier geophysics (including airborne reconnaissance), shipborne
geophysics, and numerical ice sheet and climate modelling, will be
interwoven within eleven chapters, each deling with an important
historical theme. The approach will be to first 'set the scene',
involving chapters dedicated to how ice sheets and their glacial
history can be measured. This opening section will provide
information necessary to comprehend the latter section of the book,
in which five chapters will related the glacial and climate
evolution of Antartica during the most important time-frames in
which changes have occurred.
Global Change studies are increasingly being considered a vital source of information to understand the Earth Environment, in particular in the framework of human-induced climate change and land use transformation. Satellite Earth Observing systems provide a unique tool to monitor those changes. While the range of applications and innovative techniques is constantly increasing, this book provides a summary of key case studies where satellite data offer critical information to understand the causes and effects of those environmental changes, minimizing their negative impacts. This book will be of interest to researchers and practitioners in the field of remote sensing, geographical information, meteorology and environmental sciences. Also scientists and graduate up to post-graduate level students in environmental science will find valuable information in this book.
Climate and other environmental changes are drawing unprecedented concern and attention from national governments, international organizations and local communities. Global warming has left noticeable impacts on the environment and the ecosystems it supports (including humans), and has important implications for sustainable economic and social development in the future. Satellite observations of climate and environmental change have become an increasingly important tool in recent years in helping to shape the response of international communities to this critical global challenge. The book presents the latest advances in satellite-based remote sensing of the Earth's environment - ranging from applications in climate and atmospheric science to hydrology, oceanography, hydrology, geomorphology, ecology and fire studies. Introductory chapters also cover key technical aspects such as instrumentation, calibration, data analysis, and GIS tools for decision-making.
In 1998, my colleague, Forrest Mims, and I began a project to develop inexpensive handheld atmosphere monitoring instruments for the GLOBE Program, an international environmental science and education program that began its operations on Earth Day, 1995. GLOBE's goal was to involve students, teachers, and scientists around the world in authentic partn- ships in which scientists would develop instrumentation and experimental protocols suitable for student use. In return, data collected by students and their teachers would be used by scientists in their research. This kind of collaboration represented a grand vision for science education which had never before been attempted on such a scale, and we embraced this vision with great enthusiasm. Between 1998 and 2006, Forrest Mims and I collaborated on the development of several instruments based on Mims' original concept of using light emitting diodes as spectrally selective detectors of sunlight, which was first published in the peer-reviewed literature in 1992. These instruments have evolved into a set of tools and procedures for monitoring the transmission of sunlight through the atmosphere, and they can be used to learn a great deal about the composition of the atmosphere and the dynamics of the Earth/atmosphere/sun system. If measurements with these instruments are made properly, they have significant scientific value, as well.
The term "soft computing" applies to variants of and combinations under the four broad categories of evolutionary computing, neural networks, fuzzy logic, and Bayesian statistics. Although each one has its separate strengths, the complem- tary nature of these techniques when used in combination (hybrid) makes them a powerful alternative for solving complex problems where conventional mat- matical methods fail. The use of intelligent and soft computing techniques in the field of geo- chanical and pavement engineering has steadily increased over the past decade owing to their ability to admit approximate reasoning, imprecision, uncertainty and partial truth. Since real-life infrastructure engineering decisions are made in ambiguous environments that require human expertise, the application of soft computing techniques has been an attractive option in pavement and geomecha- cal modeling. The objective of this carefully edited book is to highlight key recent advances made in the application of soft computing techniques in pavement and geo- chanical systems. Soft computing techniques discussed in this book include, but are not limited to: neural networks, evolutionary computing, swarm intelligence, probabilistic modeling, kernel machines, knowledge discovery and data mining, neuro-fuzzy systems and hybrid approaches. Highlighted application areas include infrastructure materials modeling, pavement analysis and design, rapid interpre- tion of nondestructive testing results, porous asphalt concrete distress modeling, model parameter identification, pavement engineering inversion problems, s- grade soils characterization, and backcalculation of pavement layer thickness and moduli.
A vast amount has been written on climate change and what should be our response. Rise and Fall of the Carbon Civilisation suggests that most of this literature takes a far too optimistic position regarding the potential for conventional mitigation solutions to achieve the deep cuts in greenhouse gases necessary in the limited time frame we have available. In addition, global environmental problems, as exemplified by climate change, and global resource problems - such as fossil fuel depletion or fresh water scarcity - have largely been seen as separate issues. Further, proposals for solution of these problems often focus at the national level, when the problems are global. The authors argue that the various challenges the planet faces are both serious and interconnected. Rise and Fall of the Carbon Civilisation takes a global perspective in its treatment of various solutions: * renewable energy; * nuclear energy; * energy efficiency; * carbon sequestration; and * geo-engineering. It also addresses the possibility that realistic solutions cannot be achieved until the fundamentally ethical question of global equity - both across nations today and also inter-generational - is fully addressed. Such an approach will also involve reorienting the global economy away from an emphasis on growth and toward the direct satisfaction of basic human needs for all the Earth's people. Rise and Fall of the Carbon Civilisation is aimed at the many members of the public with an awareness of climate change, but who wish to find out more about how we need to respond to the challenge. It will also be of interest to technical professionals, as well as postgraduate students and researchers, from the environmental and engineering science sectors.
This book addresses applications of earthquake engineering for both offshore and land-based structures. It is self-contained as a reference work and covers a wide range of topics, including topics related to engineering seismology, geotechnical earthquake engineering, structural engineering, as well as special contents dedicated to design philosophy, determination of ground motions, shock waves, tsunamis, earthquake damage, seismic response of offshore and arctic structures, spatial varied ground motions, simplified and advanced seismic analysis methods, sudden subsidence of offshore platforms, tank liquid impacts during earthquakes, seismic resistance of non-structural elements, and various types of mitigation measures, etc. The target readership includes professionals in offshore and civil engineering, officials and regulators, as well as researchers and students in this field.
The third book in this magical series from best-selling author and illustrator, Laura Ellen Anderson! Rainbow Grey may be only ten years old but the future of the whole world depends on her! It's up to Ray to defeat Tornadia Twist - the greatest villain that ever lived . . . Ray has to figure out what her ultimate magical gift is and use this power to stop Tornadia before she destroys the Weatherlands and Earth. With epic adventures, magic galore and everything at stake, the battle for the skies is ON!
Hydrometeorology presents an introduction to relevant topics in the interdisciplinary fields of hydrology and meteorology. This book is one of the few books aiming to provide a balance between aspects of meteorological and hydrological processes. The transfer of energy and water between the land surface and lower atmosphere within the hydrological cycle is addressed followed by a description of the nature of precipitation, and how it is formed. Forecasting precipitation is reviewed on all scales, and the range of rainfall-runoff models and coastal surge models and forecasts (including tsunamis) which have been, and are being, used are discussed. The mechanisms of snow, ice (glacier, sea and tundra), evaporation and transpiration, how drought occurs and the representation of wind are described. How rainfall (including radar measurements) and river flow information is gathered and analysed (including, frequency analysis, Probable Maximum Precipitation and Flood) are presented. Satellite measurements of precipitation are discussed. Examples of major past floods and droughts are given. Past and future climate change, which is included, underpins the importance of hydro-meteorological processes. The structure of the general circulation of the atmosphere and how it influences weather and climate including the Hadley, Ferrel and Polar cells, the Trade winds and the El Nino, is outlined. Finally, the influence of urban areas on rainfall formation, dealing with urban drainage and air quality are described. Each chapter ends with one or two specific points as appendices, elements discussed in the chapter and a list of sample problems to aid understanding. Readership: This book is aimed at 3rd year undergraduate and postgraduate students on hydrology/hydrometeorology, environmental science and geography courses. Professionals in environmental protection agencies and consultancies will also find the book of great interest. It contains a balance of both the physics and mathematics which underpin such courses and activities.
Due to political pressures, prior to the 1990s little was known
about the nature of human foraging adaptations in the deserts,
grasslands, and mountains of north western China during the last
glacial period. Even less was known about the transition to
agriculture that followed. Now open to foreign visitation, there is
now an increasing understanding of the foraging strategies which
led both to the development of millet agriculture and to the
utilization of the extreme environments of the Tibetan Plateau.
This text explores the transition from the foraging societies of
the Late Paleolithic to the emergence of settled farming societies
and the emergent pastoralism of the middle Neolithic striving to
help answer the diverse and numerous questions of this critical
transitional period.
The Juneau Icefield Research Project (JIRP) was formed to find a
prototype area to study Alaska's coastal glaciers and trends in
climatic change. For the past 57 years JIRP has conducted a
systematic study of key receding and advancing glaciers, including
Lemon Creek and Taku Glaciers. From this study, a model has been
developed to study the mass balance of these glaciers and their
relation to general atmospheric circulation. Taku's mass balance
was expected to provide a meaningful assessment of flakier climate
relations and environmental trends, specifically the increase in
atmospheric trace element pollution and global warming. |
You may like...
The Arctic - A Barometer of Global…
Neloy Khare, Rajni Khare
Paperback
R2,821
Discovery Miles 28 210
Climate Change and Crop Stress…
Arun K. Shanker, Chitra Shanker, …
Paperback
R4,990
Discovery Miles 49 900
Global Change Scenarios of the 21st…
J. Alcamo, R. Leemans, …
Hardcover
R4,336
Discovery Miles 43 360
Climate Change and Life - The Complex…
Gabriel M. Filippelli
Paperback
R2,671
Discovery Miles 26 710
Resilience - The Science of Adaptation…
Zinta Zommers, Keith Alverson
Paperback
R2,099
Discovery Miles 20 990
|