![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > Meteorology > General
The journal Boundary-Layer Meteorology was started in 1970 and has become the premier vehicle for the publication of research papers in its field. Dr R.E. Munn served as Editor-in-Chief until recently. The special 25th Anniversary volume, on which this book is based, was compiled from review and other articles solicited and selected as a Festschrift' to honour Ted Munn's achievement as editor of the journal over that time. Articles by leading contributors to the field include reviews of field studies (Askervein, HEXOS, Cabauw) and their impacts; numerical modelling (large-eddy simulation of the surface layer, frontal structures); analyses and critical discussions (of the von Karman constant, bulk aerodynamic formulations, air-sea interaction, vegetation canopies); and reviews or previews of progress in our understanding of the atmospheric boundary layer, turbulence simulation, Lagrangian descriptions of turbulent diffusion and remote sensing of the boundary layer. The collection provides an excellent perspective on the state of the subject and where it is headed. It should provide fascinating and stimulating reading for researchers and students of boundary-layer meteorology and related areas.
A quantitative measure of the accuracy of the rate coefficients and the excess energies is a desirable goal of this analysis. There are two major sources of uncertainties: The atomic and molecular data and the solar irradiance. The cross sections and branching ratios used in this analysis come from many different sources; many of them without any error indications. For this reason, we must confine ourselves to a qualitative indication of the reliability of the results. Specifically we give a quality scale in Table II for the data of each mother molecule; A indicating the highest quality of atomic and molecular data and F the lowest quality. The letter B typically means that the threshold is uncertain. For most molecules the cross section at threshold is very small and the rate coefficient for these molecules is therefore not influenced by this uncertainty. For atomic species the cross section is usually large near threshold, but for these species the threshold is known quite accurately. The letter B, therefore, indicates that the rate coefficient is most likely quite accurate, but the excess energy is less accurately known. The letter C usually means that the branching ratios are not well known. This means that the total rate coefficient is very good, but the rate coefficients and the excess energies for the individual branches are less accurate.
There have been many excellent books written on the subject of plastic deformation in solids, but rarely can one find a textbook on this subject. "Plasticity Modeling & Computation" is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids. It adopts a simple narrative style that is not mathematically overbearing, and has been written to emulate a professor giving a lecture on this subject inside a classroom. Each section is written to provide a balance between the relevant equations and the explanations behind them. Where relevant, sections end with one or more exercises designed to reinforce the understanding of the "lecture." Color figures enhance the presentation and make the book very pleasant to read. For professors planning to use this textbook for their classes, the contents are sufficient for Parts A and B that can be taught in sequence over a period of two semesters or quarters.
One of the main objectives of the European Community Programme on Solar Energy is to provide solar energy practitioners -- architects and engineers who design and implement both active and passive solar energy systems, including biomass and daylighting systems -- with well documented meteorological and climatological data so that they can estimate the solar radiation falling on a receiving surface for any location and at any time throughout the year. As a complement to its other landmark contributions in providing firm data to the solar energy community, the CEC launched a new, 36-month-long programme on 1 April 1986, which was intended to provide a better understanding of the relationship between climatic factors and solar radiation, determine the effect of anthropogenic pollution on the amount of usable solar energy, and establish sound models for the correlation between weather data, pollution, regional orography, coastal influence and the solar radiation pattern. The current volume presents the results of this research programme, gathered from eight characteristic sites in the EC. The first three chapters deal with the problem in general, present the environmental parameters which influence the radiation climate of a site, and explain the process of modelling microclimate solar radiation for a specific site. Chapter 4 deals with specific methods for evaluating microclimate solar radiation, using both a software package and a pocket calculator. Chapter 5 supplies extensive references.
This book discusses UV radiation, its effects on ecosystems and the likely evolutionary consequences of changed UV radiation environments, past, present and future. The first two chapters examine the history of the UV radiation climate of earth and the factors that determine organismal and ecosystem exposure. Their purpose is to give the reader a physical perspective on UV radiation and an understanding of the constantly changing UV environment that ecosystems are exposed to over time. Variations in the UV radiation environment occur at the local level (such as boundary layer and plant canopy effects) through to global-scale changes (such as alterations in the column abundance of UV-B protecting ozone). UV radiation regimes also vary over temporal scales. These alterations occur on time scales of seconds (the movement of clouds and plant canopies) to literally billions of years (gross long-term changes in the composition of the Earth's atmosphere). In the chapters that follow five specific biological and ecological topics in photobiology are considered. They are effects of UV radiation on amphibians, plants, corals, aquatic microbial ecosystems and Antarctic ecosystems that are exposed to the anthropogenically generated ozone 'hole'. These chapters consider UV radiation effects at a diversity of levels from the biochemical to the community. Their purpose is to provide the reader with our current understanding of the ecological effects of UV radiation, the areas where questions still remain and to provide a perspective from which the reader can better understand questions in evolutionary photobiology. The final chapter investigates the biological consequences of altered extraterrestrial ultraviolet fluxes, which are quite different from those experienced on the Earth. Our knowledge of the role of UV radiation in shaping ecologies and evolutionary change is still in its infancy. This book brings together a number of authors with the aim of helping to consolidate a better understanding of this interesting area of photobiology.
This book presents an up-to-date analysis of ocean-atmosphere interaction. Well known experts examine diverse subjects such as ocean surface waves, air-sea exchange processes, ocean surface mixed layer, water-mass formation, as well as general circulation of the oceans, El Nino and Southern Oscillation (ENSO), and the deep-ocean circulation. Other areas described are basic dynamics, data analysis techniques, numerical modelling, and remote sensing. This book is primarily aimed at graduate and senior undergraduate courses in the area of ocean-atmosphere research.
This book gathers selected papers presented at the 8th International Congress on Environmental Geotechnics (ICEG), held on October 28 - November 1, 2018 in Hangzhou, China. The theme of the congress is "Towards a Sustainable Geoenvironment", which means meeting the needs of the present generation without compromising the ability of future generations to meet their own needs. Under this theme, the congress covers a broad range of topics and provides an excellent opportunity for academics, engineers, scientists, government officials, regulators, and planners to present, discuss and exchange notes on the latest advances and developments in the research and application of environmental geotechnics.
Since the greenhouse effect emerged as a predictable threat, necessitating the evalu ation of its future impact on the environment in the various parts of the globe, interest in the climate changes during the Holocene has gained momentum. The background can be summarized by the sentence: The past is a key to the future. As a matter of fact, this sentence is in the opposite direction, on the dimension of time, to the principle adopted by the founders of the science of geology. They proposed that geological processes in the present should be used as a key for understanding the past. Another reason for the interest in the history of the climate of the Holocene can be described as the renaissance of a modified deterministic approach to the inter relation between physical and human geography. This relates in the first place to the fact that various investigations, especially as carried out by Hubert Lamb, showed that the sequence of climate changes previously suggested by Blytt and Sernander for Europe and adopted by most Holocene climatologists was far too general, and that there were more climate changes during recent history than previously taken account of. In the second place it was found out that these changes had had an impact on the history of human communities. Thus, one can conclude that once the taboo on geographical determinism (i. e."
Future Forests: Adaptation to Climate Change provides background on forests as natural and social systems, the current distribution and dynamics based on major biomes that set the stage for their role of forests in global systems, the nature of climate change organized by biomes, and detailed descriptions of mitigation and adaptation strategies. This book forms presents a foundational summary of the feedback between the effect of climate change on forests and the converse effects of forests on climate, leading to conclusions on how forest management needs to be dictated by climate change. The book will be ideal for readers in the fields of climate change science, forest science and conservation biology, helping them develop a thorough understanding on the broad perspective of climate change on forests, the response of forests to these changes, and other climate-forest interaction potentials.
The goals ofthe Symposium were to highlight advances in modelling ofatmosphere and ocean dynamics, to provide a forum where atmosphere and ocean scientists could present their latest research results and learn ofprogress and promising ideas in these allied disciplines; to facilitate interaction between theory and applications in atmosphere/ocean dynamics. These goals were seen to be especially important in view ofcurrent efforts to model climate requiring models which include interaction between atmosphere, ocean and land influences. Participants were delighted with the diversity ofthe scientific programme; the opportunity to meet fellow scientists from the other discipline (either atmosphere or ocean) with whom they do not normally interact through their own discipline; the opportunity to meet scientists from many countries other than their own; the opportunity to hear significant presentations (50 minutes) from the keynote speakers on a range ofrelevant topics. Certainly the goal ofcreating a forum for exchange between atmosphere and ocean scientists who need to input to create realistic models for climate prediction was achieved by the Symposium and this goal will hopefully be further advanced by the publication ofthese Proceedings.
This crucial volume arose out of the success of the first workshop of the Cyprus Institute held in 2005. The proceedings present an overview of the implications of climate change for the eastern Mediterranean and the impact of climate change response on regional economic activity, particularly in the hydrocarbon industry. This book is aimed not just at scientists and researchers but should command a much wider audience, including policy makers and politicians.
The feasibility to extract porous medium parameters from acoustic
recordings is investigated. The thesis gives an excellent
discussion of our basic understanding of different wave modes,
using a full-waveform and multi-component approach. Focus lies on
the dependency on porosity and permeability where especially the
latter is difficult to estimate. In this thesis, this sensitivity
is shown for interface-wave and reflected-wave modes. For each of
the pseudo-Rayleigh and pseudo-Stoneley interface waves unique
estimates for permeability and porosity can be obtained when
impedance and attenuation are combined.
This book provides the first comprehensive analysis of how aerosols form in the atmosphere through in situ processes as well as via transport from the surface (dust storms, seas spray, biogenic emissions, forest fires etc.). Such an analysis has been followed by the consideration of both observation data (various field observational experiments) and numerical modeling results to assess climate impacts of aerosols bearing in mind that these impacts are the most significant uncertainty in studying natural and anthropogenic causes of climate change.
Climate varies on all scales of time and space, bya large variety of reasons. However, before any discussion of reasons can be performed it is necessary to realize the very facts of climate variability by means of observations or reconstructions, respectively. In this book we focus on observed long-term trends of selected climate elements (tempera ture, precipitation, humidity, pressure ) as revealed by direct measurements of the Euro pean station network within the recent 100 years. Of course, there are a number of problems in detail: Reliability and accuracy of data, time series homogeneity, statistical confidence oftrends and so on. We hope that these problems are addressed in an instructive and, as far as possible, exhausting way. The main purpose of this work, however, was to provide a collection of trend charts which specify the regional particularities of observed climate trends in different months or seasons of the year leading us to an 'Atlas of observed climate trends in Europe'. Keeping in mind the recent World Meteorological Organization (WMO) climate nor mal (CLINO) period, we have also calculated the 1961-1990 trends."
Triggered by a discussion on the nature of future electricity supplies, wind - ergy utilisation has boomed dramatically, ?rst in the United States of America and Denmark and later in Germany and Spain. Thanks to state subsidies, it has within 15 years overtaken the volume of the classic renewable hydro-power, and today it accountsforabout5%ofelectricitygeneration. Twofactorssetoffthisdevelopment: anawarenessofthelimitedavailabilityof fossilfuelsandtherecognitionthatinthe19thand20thcenturiesthemassiverelease of fossil CO had kicked off a gigantic climate experiment whose results remain 2 unpredictable. The discussion on the side effects of the wind energy boom, such asoccupationoflandandthechallengespresentedbyintegrationintoconventional electricity generation systems, frequently distract attention from the real goals and bene?ts of this technology. These are establishing an energy sector that will, in the shortterm, reduceCO emissionsandtheexploitationof?niteresourcesand, inthe 2 longterm, createanunlimitedsustainableenergysupply. Because fossil reserves are relatively easy to exploit, a system developed that could hardly be more convenient. It makes electric power available in large quan- tiesatmoderatepricesandinawaythatiseasytoplan.Thetaskofthepowerutility is essentially limited to "uncritically" adjusting the supply from central power s- tionstothedemandfromconsumers.Alow-CO sustainableenergysectordemands 2 differentstandards.Windandsolarpowerhaveahighpotential, buttheyaresubject tohighnatural?uctuationsand, ingeneral, areconnectedtotheelectricitygridina decentralway.Theshareoffuturestoragetechnologiessuchashydrogentechnology willbeassmallaspossibleforreasonsofef?ciencyandcost. So, future-compatibleelectricitygenerationwillcomprisemanydifferent, partly innovative components, which also demands a considerable research and devel- menteffort.Ontheonehand, thereisthe?uctuatinginputfromrenewablesources, and on the other, electricity consumption that must to a certain extent be adjusted to supply by means of intelligent solutions. In between, to a declining extent, VI Foreword modernconventionalenergyproducers, suchascoalandnaturalgaspowerstations, areallbroughttogetherwithagreatdealoftechnicalingenuityintheformofcontrol strategiesandinformation?ows
EUROTRAC is the EUREKA environmental project studying the transport and chemical transformation of pollutants in the troposphere over Europe. At its inception in 1988 it had three aims: * to increase the basic understanding of atmospheric science; * to promote the technological development of sensitive, specific, fast-response instrumentation for environmental research and monitoring; and * to improve the scientific basis for taking future political decisions on environmental management within Europe. It was clear at an early stage, as the fourteen subprojects were formed and more than two hundred research groups in twenty-four countries were incorporated, that the first aim would readily be achieved. An ample demonstration that the early indications were correct is provided in the other volumes in this series which describe the scientific progress made. Substantial progress was also made towards achieving the second aim although some problems were encountered, mainly due to the high cost of the technological development required.
This book is the seventh volume of the proceedings of the 4th GeoShanghai International Conference that was held on May 27 - 30, 2018. This volume, entitled "Geoenvironment and Geohazards", presents the recent advances and technology in geoenvironmental engineering and geohazards. The state-of-the-art theories, methodologies and findings in the related topics are included. This book may benefit researchers and scientists from the academic fields of soil & rock mechanics, geotechnical engineering, geoenvironmental engineering, transportation engineering, geology, mining and energy, as well as practical engineers from the industry. Each of the papers included in this book received at least two positive peer reviews. The editors would like to express their sincerest appreciation to all of the anonymous reviewers all over the world, for their diligent work.
Mechanics plays a fundamental role in aeolian processes and other environmental studies. This proposed book systematically presents the new progress in the research of aeolian processes, especially in the research on mechanism, theoretical modelling and computational simulation of aeolian processes from the viewpoint of mechanics. Nowadays, environmental and aeolian process related problems are attracting more and more attention. We hope this proposed book will provide scientists and graduate students in aeolian research and other environmental research some mechanical methods and principles and introduce aeolian related problems of environment to mathematical and mechanical scientists.
This book examines the meteorological phenomenon known as Western Disturbances (WDs) and traces their influence on the Indian subcontinent. It fully details the unique characteristics and dynamics of these disturbances, which produce large-scale instabilities in the atmosphere over northern India due to the orographic influence of the Himalayas. The authors first present a definition of the phenomenon and then go on to detail their structure and migration. Topics include dynamics, energetics and thermodynamics; modelling studies; land-use and land-cover interactions; and WDs in the changing climate. In addition, coverage outlines how WDs interact with and influence other weather systems throughout the four seasons of Indian climate: winter, pre-monsoon, monsoon and post-monsoon. It places special emphasis on wintertime dynamics since WDs significantly contribute to the precipitation in India during this time. The authors explain why this period should be termed "Indian winter monsoon" and differentiate it from the northeast monsoon which so far is the prevalent term used in the region's meteorological parlance. Complete with detailed illustrations and case studies, this monograph will help researchers and students gain a fundamental understanding of these important storms. This knowledge is essential not only for short-term and seasonal hydrometeorological forecasting but also for the assessment of regional climate change and its impacts.
ALEXANDER GILLESPIE & WILLIAM C.G. BURNS The idea for this book grew out of the Ecopolitics conference in Canberra, Australia in 1996. The conference captured the ferment of the climate change debate in the South Pacific, as well as some its potential implications for the region's inhabitants and e- systems. At that conference, one of the editors (Gillespie) delivered a paper on climate change issues in the region, as did Ros Taplin and Mark Diesendorf, who are also c- tributors to this volume. This book focuses on climate change issues in Australia, New Zealand, and the small island nations in the Pacific as the world struggles to cope with possible the impacts of environmental change and to formulate effective responses. While Australia and New Zealand's per capita emissions of greenhouse gases are among the highest in the world, their aggregate contributions are small. However, both nations may exert a disprop- tionate influence in the global greenhouse debate because their obstinate positions at recent conferences of the parties to the United Nations Framework Convention on C- mate Change (FCCC) may provide justification for other developed nations, as well as developing countries, to refuse to make meaningful reductions in their greenhouse gas emissions.
The Handbook of Micrometeorology is the most up-to-date reference for micrometeorological issues and methods related to the eddy covariance technique for estimating mass and energy exchange between the terrestrial biosphere and the atmosphere. It is intended to provide micrometeorologists, ecosystem scientists, boundary-layer meteorologists, and students involved in micrometeorology with the state of science on measurement and analysis.
Since the discovery by J. E. Lovelock, R. J. Maggs and R. A. Rasmussen, in 1972, of its ubiquity in sea water, dimethyl sulphide (DMS) , a biologically produced sulphur compound, has been the subject of continuously increasing interest by the scientific community. DMS was immediately recognized as an important component of the biogeochemical sulphur cycle, and is now indicated as the second most important source of sulphur in the atmosphere, after anthropogenic so emission from fossil fuel combustion and 2 industry. DMS reacts rapidly in the atmosphere where it is oxidized to condensable acidic sulphur products; in fact, rainwater acidification, observed in remote areas, is attributed to DMS emissions. The hypothesis of a climatic role of DMS was made already in 1983 by B. Shaw, and by B. C. Nguyen, B. Bonsang and A. Gaudry. In 1987, a study appeared in Nature, in. which R. J. Charlson, J. E. Lovelock, M. O. Andreae and S. G. Warren suggested the possibility of a partial control of the climate by the biosphere through a chain of processes, linking production of DMS by marine phytoplankton with changes in clouds albedo. The publication of this paper triggered a strong debate and stimulated new efforts to describe the various aspects of the DMS cycle in the environment. The paper was timely and added to the discussion on the relative roles of atmospheric sulphur and greenhouse gases in the Earth's radiative budget.
This symposium continues a long tradition for IUGGjIUTAM symposia going back to "Fundamental Problems in Thrbulence and their Relation to Geophysics" Marseille, 1961. The five topics that were emphasized were: turbulence modeling, statistics of small scales and coherent structures, con vective turbulence, stratified turbulence, and historical developments. The objective was to consider the ubiquitous nature of turbulence in a variety of geophysical problems and related flows. Some history of the contribu tions of NCAR and its alumni were discussed, including those of Jackson R Herring, who has been a central figure at NCAR since 1972. To the original topics we added rotation, which appeared in many places. This includes rotating stratified turbulence, rotating convective turbulence, horizontal rotation that appears in flows over terrain and the role of small scale vorticity in many flows. These complicated flows have recently begun to be simulated by several groups from around the world and this meeting provided them with an excellent forum for exchanging results, plus inter actions with those doing more fundamental work on rotating stratified and convective flows. New work on double diffusive convection was given in two presentations. The history of Large Eddy Simulations was presented and several new approaches to this field were given. This meeting also spawned some interesting interactions between observational side and how to inter pret the observations with modeling and simulations around the theme of particle dispersion in these flows."
|
You may like...
Global Change Scenarios of the 21st…
J. Alcamo, R. Leemans, …
Hardcover
R4,336
Discovery Miles 43 360
Resilience - The Science of Adaptation…
Zinta Zommers, Keith Alverson
Paperback
R2,099
Discovery Miles 20 990
Modeling and Mitigation Measures for…
Kasiviswanathan KS, Soundharajan Dr., …
Paperback
R3,436
Discovery Miles 34 360
Changing Climate and Resource use…
Amitav Bhattacharya
Paperback
|